• Title/Summary/Keyword: hydraulic interaction

Search Result 178, Processing Time 0.02 seconds

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

A study on the long-term behavior due to the hydraulic interaction between ground water and tunnel (지하수-터널 수리상호작용에 따른 터널의 장기거동 연구)

  • Shin, Jong-Ho;Shin, Yong-Suk;Ahn, Sang-Ro;Park, Dong-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.239-248
    • /
    • 2006
  • The interaction between ground water and structure is complicated behavior which cannot be easily investigated In the laboratory and monitored in the fields. In this study numerical simulation of the interactive behavior was performed using sophisticated coupled-finite element method. Hydraulic behavior of structure is modeled using solid elements with finite Permeability. Recovery of ground water table in the long-term is considered by controlling hydraulic boundary conditions. The results showed that the interaction effect is significant. Particularly non-symmetry in the lining permeability resulted in highly unbalanced pore water pressure which may cause detrimental effects on inner linings of tunnels acting as drains.

  • PDF

Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams

  • Shariatmadar, H.;Mirhaj, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.65-79
    • /
    • 2011
  • Concrete hydraulic structures such as: Dams, Intake Towers, Piers and dock are usually recognized as" Vital and Special Structures" that must have sufficient safety margin at critical conditions like when earthquake occurred as same as normal servicing time. Hence, to evaluate hydrodynamic pressures generated due to seismic forces and Fluid-Structure Interaction (FSI); introduction to fluid-structure domains and interaction between them are inevitable. For this purpose, first step is exact modeling of water-structure and their interaction conditions. In this paper, the basic equation involved the water-structure-foundation interaction and the effective factors are explained briefly for concrete hydraulic structure types. The finite element modeling of two concrete gravity dams with 5 m, 150 m height, reservoir water and foundation bed rock is idealized and then the effects of fluid domain and bed rock have been investigated on modal characteristic of dams. The analytical results obtained from numerical studies and modal analysis show that the accurate modeling of dam-reservoir-foundation and their interaction considerably affects the modal periods, mode shapes and modal hydrodynamic pressure distribution. The results show that the foundation bed rock modeling increases modal periods about 80%, where reservoir modeling changes modal shapes and increases the period of all modes up to 30%. Reservoir-dam-foundation interaction increases modal period from 30% to 100% for different cases.

Hydro-mechanical interaction of reinforced concrete lining in hydraulic pressure tunnel

  • Wu, He-Gao;Zhou, Li;Su, Kai;Zhou, Ya-Feng;Wen, Xi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.699-712
    • /
    • 2019
  • The reinforced concrete lining of hydraulic pressure tunnels tends to crack under high inner water pressure (IWP), which results in the inner water exosmosis along cracks and involves typical hydro-mechanical interaction. This study aims at the development, validation and application of an indirect-coupled method to simulate the lining cracking process. Based on the concrete damage plasticity (CDP) model, the utility routine GETVRM and the user subroutine USDFLD in the finite element code ABAQUS is employed to calculate and adjust the secondary hydraulic conductivity according to the material damage and the plastic volume strain. The friction-contact method (FCM) is introduced to track the lining-rock interface behavior. Compared with the traditional node-shared method (NSM) model, the FCM model is more feasible to simulate the lining cracking process. The number of cracks and the reinforcement stress can be significantly reduced, which matches well with the observed results in engineering practices. Moreover, the damage evolution of reinforced concrete lining can be effectively slowed down. This numerical method provides an insight into the cracking process of reinforced concrete lining in hydraulic pressure tunnels.

Verification of Numerical Technique for Hydraulic Fracturing Stimulation - by Comparison with Analytical Solutions - (수압파쇄 설계를 위한 수치해석기법의 증명 -해석식과의 비교를 중심으로 -)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • Hydraulic fracturing technology has been widely applied in the industry for the recovery of the natural resources such as gas, oil and geothermal heat from hot dry rock. During hydraulic fracturing stimulation, multiple cracks are created resulting in mechanical interaction between cracks. Such an interaction influences obtaining hydraulic fracturing key parameters (crack opening, length, and borehole net pressure). The boundary collocation method (BCM) has been proved to be very effective in considering mechanical interaction. However, for better confidence, it needs to be verified by comparison with analytical solutions such as stress intensity factors. In this paper, three cases, single fracture in remote uniaxial tension, single fracture in remote shear stress field and two arbitrary segments in an infinite plane loaded at infinity are considered. As a result, the BCM is proved to be valid technique to consider mechanical interaction between cracks and can be used to estimate the hydraulic fracturing parameters such as opening of the fracture, and so on.

  • PDF

Study on the Fracture Deformation Characteristics in Rock by Hydraulic Fracturing (수압파쇄에 의한 암반 균열의 변형 특성 연구)

  • Sim, Young-Jong;Kim, Hong-Taek;Germanovich, Leonid N.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.43-53
    • /
    • 2006
  • Hydraulic fracturing is an important and abundant process in both industrial applications and natural environments. The formation of hydraulic fractures includes nucleation, growth, and termination in numerous rock types and stress regimes, at scales ranging from microns to many kilometers. As a result, fracture segmentation, commonly observed at all scales and in all geo-materials, contributes to this complexity in many ways. In particular, the mechanical interaction of fracture segments strongly affect almost all hydraulic fracturing processes. In this paper, the segmented fracture opening deformation in rock by hydraulic fracturing is quantified using boundary collocation method and is compared with non-interacting single fracture.

  • PDF

Mechanical and hydraulic interaction between braced wall and groundwater (흙막이 벽체와 그라우트 특성에 따른 구조.수리상호 작용)

  • Nam, Teak-Soo;Yoon, Jau-Ung;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1172-1177
    • /
    • 2010
  • For the deep excavation in urban area, the braced-cut method is mainly adopted. In this case, inadequate consideration of ground water level may result in wrong prediction of structural behavior. In this study, the effects of hydraulic interaction between wall and grout were investigated using the finite element method. The maximum stress in case of confined ground water condition is obtained at the final excavation stage in the range of 70~80% of excavation depth. The stress of impermeable case is about 50% larger than that of permeable case. When the relative permeabililty of wall-grout become smaller, the stress is getting bigger. And the stress tends to converge in case of 1/100 or less of the relative permeability.

  • PDF

Dynamic Analysis of AP1000 Shield Building Considering Fluid and Structure Interaction Effects

  • Xu, Qiang;Chen, Jianyun;Zhang, Chaobi;Li, Jing;Zhao, Chunfeng
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.246-258
    • /
    • 2016
  • The shield building of AP1000 was designed to protect the steel containment vessel of the nuclear reactor. Therefore, the safety and integrity must be ensured during the plant life in any conditions such as an earthquake. The aim of this paper is to study the effect of water in the water tank on the response of the AP1000 shield building when subjected to three-dimensional seismic ground acceleration. The smoothed particle hydrodynamics method (SPH) and finite element method (FEM) coupling method is used to numerically simulate the fluid and structure interaction (FSI) between water in the water tank and the AP1000 shield building. Then the grid convergence of FEM and SPH for the AP1000 shield building is analyzed. Next the modal analysis of the AP1000 shield building with various water levels (WLs) in the water tank is taken. Meanwhile, the pressure due to sloshing and oscillation of the water in the gravity drain water tank is studied. The influences of the height of water in the water tank on the time history of acceleration of the AP1000 shield building are discussed, as well as the distributions of amplification, acceleration, displacement, and stresses of the AP1000 shield building. Research on the relationship between the WLs in the water tank and the response spectrums of the structure are also taken. The results show that the high WL in the water tank can limit the vibration of the AP1000 shield building and can more efficiently dissipate the kinetic energy of the AP1000 shield building by fluid-structure interaction.

하천 바닥 퇴적층의 투수성시험과 누수계수 추정

  • Ha Gyu-Cheol;Go Dong-Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.371-374
    • /
    • 2006
  • To quantify the hydraulic connection between river and aquifer, riverbed leakance values are required to be estimated. Silt, clay, and organic materials are often deposited in rivers resulting in the streambed having a lower hydraulic conductivity than the underlying alluvial aquifer The riverbed hydraulic conductivities are measured through vertical and oblique permeameter test. Anisotropic and heterogeneous properties of riverbed hydraulic conductivity were identified. Grain size analysis and flood wave response technique were checked along with the permeameter test for the riverbed hydraulic conductivity.

  • PDF

Numerical simulation of 2-D fluid-structure interaction with a tightly coupled solver and establishment of the mooring model

  • Tsai, I-Chen;Li, Sing-Ya;Hsiao, Shih-Chun;Hsiao, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.433-449
    • /
    • 2021
  • In this study, a newly enhanced Fluid-Structure Interaction (FSI) model which incorporates mooring lines was used to simulate a floating structure. The model has two parts: a Computational Fluid Dynamics (CFD) model and a mooring model. The open-source CFD OpenFOAM® v1712 toolbox was used in the present study, and the convergence criteria and relaxation method were added to the computational procedure used for the OpenFOAM multiphase flow solver, interDyMFoam. A newly enhanced, tightly coupled solver, CoupledinterDyMFoam, was used to decrease the artificial added mass effect, and the results were validated through a series of benchmark cases. The mooring model, based on the finite element method, was established in MATLAB® and was validated against a benchmark analytical elastic catenary solution and numerical results. Finally, a model which simulates a floating structure with mooring lines was successfully constructed by connecting the mooring model to CoupledinterDyMFoam.