• Title/Summary/Keyword: hydraulic efficiency

Search Result 913, Processing Time 0.026 seconds

Hydraulic Performance Analysis of Francis Type Turbine (프란시스수차의 수력학적 성능특성 분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.664-667
    • /
    • 2009
  • The Francis type hydro turbine with vertical axis has been designed and analized for hydraulic performance verification. The guide vane angle of turbine casing were designed to be varied according to the condition of head and flowrate. When the changes in flowrate and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed hydro turbine in this study will be suitable for small hydro power stations with medium and high head such as agricultural reservoirs and large dam.

  • PDF

Influence of Side Leakage Loss on the Performance of a Micro Positive Displacement Hydraulic Turbine (마이크로 용적형 수차의 측면누설손실이 성능에 미치는 영향)

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.291-295
    • /
    • 2006
  • Recently, greenhouse effect by $CO_2$ gas emitted by use of fossil fuel causes earth environmental problem. As a countermeasure of the global warming. micro hydropower under 100kW becomes the focus of attention for its clean and renewable energy sources. Newly developed micro positive displacement hydraulic turbine shows high efficiency and good applicability for the micro hydropoewer. The purpose of this study is to clarify the influence of leakage loss and effective head on the performance of the positive displacement hydraulic turbine for the further improvement of the turbine performance. The results show that the turbine. with a smaller side clearance. has much higher efficiency than that with bigger side clearance and it can sustain the high efficiency under the wider range of operation conditions. The turbine torque is proportional to the effective head and independent of the flow rate. The leakage is also dependent on the effective head but nearly independent of the flow rate.

Influence of slot width on the performance of multi-stage overtopping wave energy converters

  • Jungrungruengtaworn, Sirirat;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.668-676
    • /
    • 2017
  • A two-dimensional numerical investigation is performed to study the influence of slot width of multi-stage stationary floating overtopping wave energy devices on overtopping flow rate and performance. The hydraulic efficiency based on captured crest energy of different device layouts is compared with that of single-stage device to determine the effect of the geometrical design. The results show optimal trends giving a huge increase in overtopping energy. Plots of efficiency versus the relative slot width show that, for multi-stage devices, the greatest hydraulic efficiency is achieved at an intermediate value of the variable within the parametric range considered, relative slot width of 0.15 and 0.2 depending on design layouts. Moreover, an application of adaptive slot width of multi-stage device is investigated. The numerical results show that the overall hydraulic efficiency of non-adaptive and adaptive slot devices are approximately on par. The effect of adaptive slot width on performance can be negligible.

Development of a Visual Hydraulic Oil System for the Efficient Hydraulic Oil Experiment Education (효율적인 유압 실험실습교육을 위한 비주얼 유압 시스템 개발)

  • Roh Hyung-Woon;Kim Jae-Soo;Kim Wook;Lee Hee-Sang
    • Journal of Engineering Education Research
    • /
    • v.4 no.2
    • /
    • pp.11-19
    • /
    • 2001
  • Current educational hydraulic oil systems consist of the composites for the hydraulic circuits. These systems not only could attract students' interests, but also increase the teaching efficiency during the lectures. Thus, the visual hydraulic oil system has been developed to enhance educational efficiency and to improve learning methods. With this new system, the students can easily examine the oil flow for hydraulic oil parts in mechanical engineering experiments. In order to develop the new system, the hydraulic constitute was made of acryl resin, and previous pipes were replaced by transparent and flexible tubes. Red colored oil was also used to visualize the oil flow. Furthermore, if OHP (Over Head Projector) was used for a theoretical lectures, the visual units can be used to classify the differences of the valve structure or the circuits. If lecturers use the developed visual hydraulic system, students can make an effective experiment on the basic theories and principles. Therefore, we can promote the students' interests and materialize the objectives of the subject. The results of this paper can be widely used to improve the efficiency of the mechanical engineering education.

  • PDF

Evaluation of hydraulic dead-zone and particle removal efficiency in the base frame of a constructed wetland using computational fluid dynamics (인공습지 기본형상에서 전산유체역학을 이용한 사류구간 및 입자제거율 평가)

  • Choi, Young-Gyun;Park, Min-Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.495-502
    • /
    • 2013
  • Hydraulic dead-zone and particle removal efficiency in the base frame of a constructed wetland was evaluated with computational fluid dynamics (CFD). The fraction of hydraulic dead-zone was estimated to be 1.2-2.1 % (v/v) and it was attributed to the artificial islands developed in the constructed wetland. Solids deposition rate could be increased with higher hydraulic retention time (HRT, ranged from 2.2 to 4.2 hr) of the wetland and larger particle size (ranged from 10 to $50{\mu}m$) in the influent. Experimental results showed that the volume concentration of the particles smaller than $10{\mu}m$ in diameter was varied from $1.99{\times}10^3{\mu}m^3/ml$ (HRT 12.8 hr) to $3.92{\times}10^3{\mu}m^3/ml$(HRT 2.2 hr) in the influent of the constructed wetland. With the effluent volume concentration data, removal efficiency of those particles was calculated to be 71.2 and 24.7 % when the HRT was 12.8 and 2.2 hr, respectively. Similar trend with the HRT variation could be identified with CFD analysis.

Study of Hydraulic Transport of Sand-water Mixture by a Dredging Test Loop (준설시험루프를 이용한 모래-물 혼합물 배송에 관한 연구)

  • Lee, Man-Soo;Park, Young-Ho;Lee, Young-Nam;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1504-1511
    • /
    • 2005
  • The efficiency of the hydraulic transport of soil-water mixtures is an important factor in designing and operating a pump & pipeline system and is directly connected with dredging cost and working period. However, the hydraulic transport mechanism in the slurry flow inside the pipeline such as frictional losses, specific energy consumption, deposition velocity has not been well established. In this study a new dredging test loop system was designed and built. It is composed of a slurry pipeline with pipes of different diameters, a centrifugal slurry pump and a diesel engine connected with the slurry pump. and equipped with modern measuring facilities that enable to measure all important characteristics of a transportation system. The objective of this paper is to discuss the efficiency of the hydraulic transport of the Jumoonjin sand-water mixtures in the dredging test loop and to present simple equations induced from the test results of the loop that can express the transport product and the transport productivity.

  • PDF

Case study comparisons of computational fluid dynamics modeling versus tracer test to evaluate the hydraulic efficiency of clearwell (정수지 내 추적자 실험과 CFD(전산유체역학)의 상관관계 분석)

  • Kim, Tae-Kyun;Choi, Young-June;Jo, Young-Mahn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.635-642
    • /
    • 2011
  • Hydraulic efficiency was a vital component in evaluating the disinfection capability of clearwell. Current practice evaluates these system based on the tracer test only. In this paper, CFD(Computational Fluid Dynamics) was applied on the clearwell for alternating or supplementing the tracer test. The baffle factor derived from the CFD modeling closely matched the values obtained from full scale tracer testing. And, for suggesting proper numerical model in clearwell; the turbulence model, discretization scheme, convergence criteria were investigated through separate simulation runs. The model validation was conducted by comparing the simulated data with experimental data. In the turbulence model, the realizable ${\kappa}-{\varepsilon}$ model and the standard ${\kappa}-{\varepsilon}$ model were found to be more appropriate than RNG ${\kappa}-{\varepsilon}$ model. The residuals of convergence criteria should be used as not $10^{-3}$ but $10^{-4}$ or $10^{-5}$. In discretization scheme, the difference of simulated values in 1st, 2nd, 3rd upwind scheme was found to be insignificant. Moreover, the result of this study suggest that CFD modeling can be a reliable alternative to tracer testing for evaluating the hydraulic efficiency.

Surface Roughness Impact on Francis Turbine Performances and Prediction of Efficiency Step Up

  • Maruzewski, Pierre;Hasmatuchi, Vlad;Mombelli, Henri-Pascal;Burggraeve, Danny;Iosfin, Jacob;Finnegan, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • In the process of turbine modernizations, the investigation of the influences of water passage roughness on radial flow machine performance is crucial and validates the efficiency step up between reduced scale model and prototype. This study presents the specific losses per component of a Francis turbine, which are estimated by CFD simulation. Simulations are performed for different water passage surface roughness heights, which represents the equivalent sand grain roughness height. As a result, the boundary layer logarithmic velocity profile still exists for rough walls, but moves closer to the wall. Consequently, the wall friction depends not only on roughness height but also on its shape and distribution. The specific losses are determined by CFD numerical simulations for each component of the prototype, taking into account its own specific sand grain roughness height. The model efficiency step up between reduced scale model and prototype value is finally computed by the assessment of specific losses on prototype and by evaluating specific losses for a reduced scale model with smooth walls. Furthermore, surveys of rough walls of each component were performed during the geometry recovery on the prototype and comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements. This study underlines that if rough walls are considered, the CFD approach estimates well the local friction loss coefficient. It is clear that by considering sand grain roughness heights in CFD simulations, its forms a significant part of the global performance estimation. The availability of the efficiency field measurements provides an unique opportunity to assess the CFD method in view of a systematic approach for turbine modernization step up evaluation. Moreover, this paper states that CFD is a very promising tool for future evaluation of turbine performance transposition from the scale model to the prototype.

Effects of Different Hydraulic Retention Times on Contaminant Removal Efficiency Using Aerobic Granular Sludge (HRT 변경에 따른 호기성 그래뉼 슬러지의 오염원 제거효율에 미치는 영향)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.669-676
    • /
    • 2019
  • The purpose of this study was to evaluate the effects of different Hydraulic Retention Times (HRTs) on the contaminant removal efficiency using Aerobic Granular Sludge (AGS). A laboratory-scale experiment was performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen, orthophosphate removal efficiency, AGS/MLSS ratio, and precipitability in accordance with the HRT were evaluated. As a result, the COD removal efficiency was not significantly different with the reduction in HRT, and at a HRT of 6 h, the removal rate was slightly increased owing to the increase in organic loading rate. The nitrogen removal efficiency was improved by injection of influent division at a HRT of 6 h. As the HRT decreased, the MLSS and AGS tended to increase, and the sludge volume index finally decreased to 50 mL/g. In addition, the size of the AGS gradually increased to about 1.0 mm. Therefore, the control of HRT provides favorable conditions for the stable formation of AGS, and is expected to improve the contaminant removal efficiency with the selection of a proper operation strategy.

A Study on Wear Property of Oil Hydraulic Piston Pump Material (유압 피스톤 펌프 소재의 마모 특성에 관한 연구)

  • Kim, Nam-Soek;Kim, Hyun-Soo;Seong, Ki-Yong;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.30-34
    • /
    • 2009
  • Oil hydraulic piston pumps are being extensively used in the world, because of simple design, light weight and effective cost etc. An oil hydraulic pump is likely to have serious problems of high leakage, friction and low energy efficiency according to large time use. In the oil hydraulic piston pumps the clearance between the valve block and piston plays an important role for volumetric and overall efficiency. In this paper, the wear property of the SACM645 material used the hydraulic piston pump has been work out by experimentation with variable heat treatment. To investigate the effect according to the piston surface condition, seven different types specimen were prepared. From the wear test results, induction hardening and nitration were definitely superior to the others. On the whole, nitration was estimated for high strength material to wear resistance.