• Title/Summary/Keyword: hydraulic conductivity field

Search Result 137, Processing Time 0.028 seconds

Bio-barrier Formation by Biomass Injection into Soil (미생물 토양 주입을 통한 Bio-barrier 형성)

  • Kim, Geon-Ha;Song, Youngwoo;Gu, Dongyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.927-938
    • /
    • 2000
  • When microorganism is injected into porous medium such as soils along with appropriate substrate and nutrients, biomass retained in the soil pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrates and nutrients. Biomass-soil mixture was evaluated its applicability to the field condition as an alternative liner material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles. Resistance of biofilm to chemical solution and degree of biodegradation were measured through column test.

  • PDF

A Fundamental Study on the Waste Polyethylene Chips Mixed with Soil (폐비닐 골재 혼합토의 기본 성질에 관한 연구)

  • 김영진;김현민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.548-555
    • /
    • 2000
  • It was investigated whether the waste polyethylene chips can be recycled as construction materials in geotechnical engineering field. The standard Proctor test, the hydraulic conductivity test, the large box direct shear test, the thermal conductivity test, the frost heaving test and the time domain reflectometry test were performed on weathered granite soil mixed with variable amount of the waste polyethylene chips. The experimental results showed that the hydraulic conductivity and the shear strength of weathered granite soil increase with increasing the amount of the waste polyethylene chips. On the other hand, the thermal conductivity, the amount of frost heaving and the unfrozen water contents of weathered granite soil decrease with increasing the amount of the waste polyethylene chips.

  • PDF

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls (토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

A Measurement of Hydraulic Conductivity of Disturbed Sandy Soils by Particle Analysis and Falling Head Method (입도분석 및 변수두법을 이용한 교란 사질 토양의 투수계수 측정)

  • Jeong Ji-Gon;Seo Byong-Min;Ha Seong-Ho;Lee Dong-Won
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.15-21
    • /
    • 2006
  • Sandy soils obtained from the field were examined by the way of particle analyses. The hydraulic conductivity values of the disturbed soil samples were measured by the falling head method. Then the correlations between the hydraulic conductivity and particle distribution were defined. The soil which was a product of the weathering of the granitic rocks belonged to sand and loamy sand area in a sand-silt-clay triangular diagram. The measurements of hydraulic conductivity were $1.15X10^{-5}\sim7.31X10^{-4}cm/sec$ which is the range of sand and silt. It was clearly observed that the hydraulic conductivity measurements of the sandy soils showed stronger correlations with the particle variances rather than the mean grain sizes. The larger the variances, the smaller the hydraulic conductivity measurements. The sandy soil which was a product of weathered granite and whose mean grain size was $0.38\sim1.97mm$ showed regression curves of $y=6.0E-5x^{-1.4}$ in a correlations between hydraulic conductivity and particle variances. Accordingly, it is clearly concluded that making estimates with-out any consideration about particle variances can produce serious errors.

Green and Ampt Parameter Estimation Considering Temporal Variation of Physical Properties on Tilled Soil (경운토양의 물리적 특성변화를 고려한 Green And Ampt 매개변수의 추정)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.120-129
    • /
    • 1991
  • This study refers to temporal variation of physical properties of tilled soil under natural rainfalls. Field measurements of porosity, average hydraulic conductivity and average capillary pressure head on a tilled soil were conducted by soil sampler and air-entry permeameter respectively at regular intervals after tillage. Temporal variation of these physical properties were analysed by cumulative rainfall energy since tillage. Field experiment was conducted on a sandy loam soil at Suwon durging April~July in 1989. The followings are a summary of this study results ; 1. Average porosity just after tillage was 0.548cm$^3$/cm$^3$. As cumulative rainfall energy were increased in 0.1070, 0.1755, 0.3849 J/cm$^2$, average porosity were decreased in 0.506, 0.4]95, 0.468m$^3$/cm$^3$ respectively. 2. Average hydraulic conductivity just after tillage was 45.42cm/hr. As cumulative rainfall energy were increased in 0.1755, 0.2466, 0.2978, 0.3849J/cm$^2$ average hydraulic conductivity were decreased in 15.34, 13.47, 9.58, 8.65cm/hr respectively. 3. As average porosity were decreased in 0.548, 0.506, 0.495, 0.468cm$^3$/cm$^3$ average capillary pressure head were increased in 6.1, 6.7, 6.9, 7.4cm respectively. 4. It was found that temporal variation of porosity, average hydraulic conductivity on a tilled soil might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity. 5. The results of this study may be helpful to predict infiltration into a tilled soil more accurately by considering Temporal variation of physical properties of soil.

  • PDF

Estimation of Hydraulic Parameters from Slug, Single Well Pumping and Step-drawdown Tests (순간수위 변화시험, 단공양수시험 및 단계양수시험을 통한 수리상수 추정연구)

  • Jo, Yun-Ju;Lee, Jin-Yong;Jun, Seong-Chun;Cheon, Jeong-Yong;Kwon, Hyung-Pyo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.203-212
    • /
    • 2010
  • The aim in this study is used to develop the remediation technologies for contaminated ground water. Slug, single well pumping and step-drawdown tests have been used to obtain hydraulic parameter estimates in the field. Slug tests yield hydraulic conductivity values using the Bouwer and Rice and C-B-P analysis methods. The mean and median hydraulic conductivity values of Bouwer and Rice method are $4.48{\times}10^{-3}$ and $1.16{\times}10^{-3}cm/sec$, respectively. On the other hand, C-B-P method gave mean and median hydraulic conductivity values of $2.37{\times}10^{-3}$ and $7.09{\times}10^{-4}cm/sec$, respectively. These analyses show a trend for the Bouwer and Rice method to yield lower hydraulic conductivity values in low permeability zones of granite in the study area. Sing well pumping test data were calculated through type curve in GW7, GW12 and MW9 wells. It could be interpreted that the differences of hydraulic conductivity and transmissivity values between GW7 and GW12, MW9 is related with fault clays and fractures in the bedrock among the wells. Step-drawdown tests were carried out in the KDPW1 and KDPW2 wells. The hydraulic parameter of KDPW1 and KDPW2 showed very litter difference between the values. The study of hydraulic parameter estimates can be used to purify in contaminated groundwater.

Field Measurement of Surface Hydraulic Conductivity Distribution Using Guelph Permeameter : A Case Study in the Riverbank Filtration Site of Kimhae (Ddanseom) (Guelph 투수계를 이용한 김해시 딴섬 강변여과수 지역의 지표 수리전도도 분포 조사)

  • Jeong, Jae-Hoon;Kim, Hyoung-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.36-43
    • /
    • 2008
  • A method estimating unsaturated hydraulic conductivity using Guelph permeameter was developed and applied to the Ddanseom area of Kimhae in Nakdong River basin where the facilities producing bank-filtrated groundwaters are currently under construction. It is believed that the hydraulic conductivity values obtained from this study are useful in determination of recharges through unsaturated zone or from the river. The distribution of the surface hydraulic conductivity shows that sediments are finer downstream, implying the downstream part of Ddanseom has the higher potential of groundwater production.

Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level (강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정)

  • Park, Seunghyuk;Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.303-314
    • /
    • 2019
  • Surface permeability and shallow geological structures play significant roles in shaping the groundwater recharge of shallow aquifers. Surface permeability can be characterized by two concepts, intrinsic permeability and hydraulic conductivity, with the latter obtained from previous near-surface geological investigations. Here we propose a hydraulic equation via the cross-correlation analysis of the rainfall-groundwater levels using a regression equation that is based on the cross-correlation between the grain size distribution curve for unconsolidated sediments and the rainfall-groundwater levels measured in the Gyeongju area, Korea, and discuss its application by comparing these results to field-based aquifer test results. The maximum cross-correlation equation between the hydraulic conductivity derived from Zunker's observation equation in a sandy alluvial aquifer and the rainfall-groundwater levels increases as a natural logarithmic function with high correlation coefficients (0.95). A 2.83% difference between the field-based aquifer test and root mean square error is observed when this regression equation is applied to the other observation wells. Therefore, rainfall-groundwater level monitoring data as well as aquifer test are very useful in estimating hydraulic conductivity.

Field Measurements and Numerical Analysis on the Efficiency of Water Curtain Boreholes in Underground Oil Storages (지하 유류비축기지 수벽공의 효율에 관한 현장계측 및 수치 해석 연구)

  • 이경주;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.79-86
    • /
    • 1998
  • This study was performed to suggest to suggest suitable design conditions of water curtain system through analysis on pressure down in boreholes by hydraulic tests carried out I construction fields for underground oil storages. The influence by hydraulic conductivities of rock mass around boreholes on pressure down in boreholes was analysed. The relationship between array of boreholes and their pressure down was also analysed. Groundwater flow analysis on crude oil and LPG storages was carried out to evaluate results of field tests and to investigate distribution of hydraulic gradient in rock mass around cavern using finite difference method. As the results, hydraulic tests showed that pressure down in boreholes was inverse proportional to the hydraulic conductivity of surrounding rock mass. The rate of pressure down of boreholes was not influenced by water curtain system more than 20m over cavern and was proportional to installation interval of boreholes. The hydraulic gradient in rock mass around cavern was proportional to distance and interval of boreholes and its value was not satisfactory to oil tightness condition in case of no water curtain system.

  • PDF