• 제목/요약/키워드: hydraulic clamping

Search Result 17, Processing Time 0.022 seconds

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.

A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor (서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구)

  • Yun, Hongsik;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.

Development of the Design Algorithm Using the Equivalent Magnetic Circuit Method for Colenoid Type Electromagnetic Linear Actuator (등가자기회로를 활용한 콜레노이드 타입 선형 액츄에이터 설계 알고리즘 개발)

  • Han, Dong-Ki;Chang, Jung-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.55-61
    • /
    • 2016
  • This study proposes the design algorithm of an electromagnetic linear actuator with a divided coil excitation system, such as the colenoid (COL) system, using the equivalent magnetic circuit (EMC) method. Nowadays, the clamping device is used to hold workpiece in the electrically driven chucking system and is needed to produce a huge clamping force of 40 kN like hydraulic system. The design algorithm for electromagnetic linear actuator can be obtained using the EMC method. At first, the parameter map is used to decide the slot width ratio in the initial design. Next, to make the magnetic flux density uniform at each pole, the pole width is adjusted by the pole width adjusting algorithm with EMC. When the dimensions of the electromagnetic linear actuator are decided, the clamping force is calculated to check the desired clamping force. The design results show that it can be used to hold a workpiece firmly instead of using a hydraulic cylinder in a chucking system.

Multiple Axes Position Synchronizing Control of Hydraulic-Cylinder Load System for Clamping Process (클램핑 공정을 위한 유압실린더-부하계의 다축 위치 동기제어)

  • Cho, Seung Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • This paper presents a synchronizing adaptive feedforward control for clamping servomechanism of injection molding machines. Based on MBS, virtual design model has been developed for a direct forcing clamping mechanism. A synchronizing controller is designed and combined with adaptive feedforward control to accommodate mismatches between the real plant and the linear plant model used. From tracking control simulations, it is shown that significant reduction in position tracking error is achieved through the use of proposed control scheme.

A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts (토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

Design of Hydraulic & Control System for the Disc Spinning Machine (디스크 스피닝 성형기의 유압 및 제어시스템 설계)

  • Gang, Jung-Sik;Park, Geun-Seok;Gang, E-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.157-165
    • /
    • 2002
  • The design of hydraulic & control system has been developed for the disc spinning machine. The hydraulic system has been designed in the overall system including the vertical & horizontal slide fur spinning works which are controlled by hydraulic servo valves in right & left side, and the clamping slide for holding & pressing blank material in center during spinning process. Based on the design concept of this hydraulic system, model test experiments for hydraulic servo control system is tested to conform confidence and applying possibility. The control system is introduced with the fuzzy-sliding mode controller for the hydraulic force control reacting force as a disturbance, because a fuzzy controller does not require an accurate mathematical model for the generation of nonlinear factors in the actual nonlinear plant with unknown disturbances and a sliding controller has the robustness & stability in mathematical control algorithm. We conform that the fuzzy-sliding mode controller has a good performance in force control for the plant with a strong disturbance. Also, we observe that a steady state error of the fuzzy-sliding mode controller can be reduced better than those of an another controllers.

Risk Priority Number using FMEA by the Plastic Moulding Machine (사출성형기의 고장모드 영향분석(FMEA)을 활용한 위험 우선순위)

  • Shin, Woonchul;Chae, Jongmin
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.108-113
    • /
    • 2015
  • Plastic injection moulding machine is widely used for many industrial field. It is classified into mandatory safety certification machinery in Industrial Safety and Health Act because of its high hazard. In order to prevent industrial accidents by plastic injection moulding machine, it is necessary for designer to identify hazardous factors and assess the failure modes to mitigate them. This study tabulates the failure modes of main parts of plastic injection moulding machine and how their failure has affect on the machine being considered. Failure Mode & Effect Analysis(FMEA) method has been used to assess the hazard on plastic injection moulding machine. Risk and risk priority number(RPN) has been calculated in order to estimate the hazard of failures using severity, probability and detection. Accidents caused by plastic injection moulding machine is compared with the RPN which was estimated by main regions such as injection unit, clamping unit, hydraulic and system units to find out the most dangerous region. As the results, the order of RPN is injection unit, clamping unit, hydraulic unit and system units. Barrel is the most dangerous part in the plastic injection moulding machine.

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging (액압벌징에 의한 보온용기의 제조방법 개발)

  • Chung, Joon-Ki;Cho, Woong-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.24-31
    • /
    • 1999
  • Bulging is a forming method to shape of die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at the both ends of tube. The diameter of tube expands by hydraulic pressure in tube. at the same time, thrust at the both ends of tube. pushes tube in the direction of expansion to obtain high expanding rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by the combination method of bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging

  • Chung, Joon-Ki;Cho, Woong-Shick
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.40-46
    • /
    • 2001
  • Bulging is a forming method to shape die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at both ends of the tube. The diameter of tube expands by hydraulic pressure in tube. At the same time, thrust at both ends of the tube pushes tube in the direction of expansion to obtain high expansion rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by combining bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

Trajectory Tracking Control of Injection Molding Cylinder Driven by Speed Controlled Hydraulic Pump (속도제어-유압펌프에 의하여 구동되는 사출성형 실린더의 궤적추적제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.21-27
    • /
    • 2007
  • This paper deals with the issue of trajectory tracking control of a clamping cylinder for injection moulding machine, which is directly driven by speed controlled hydraulic pump in combination with AC servomotor. As a fundamental step prior to tracking controller design, feedback control system is developed by implementing a position control loop parallel with a system pressure control loop. A sliding mode controller combining velocity feedforward scheme is developed for enhancing the tracking performance. Consequently a significant reduction in tracking error is achieved for both position and pressure control applications.

  • PDF