• Title/Summary/Keyword: hydration properties

Search Result 694, Processing Time 0.035 seconds

Physicochemical Properties and Hydration of Rice on Various Polishing Degrees (도정도에 따른 쌀의 수화와 이화학적 특성)

  • Kim, Kyung-Ae;Jeon, Eun-Ryae
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.959-964
    • /
    • 1996
  • The physicochemical and gelatinization properties of rice flours, which were prepared by polishing nonwaxy brown rice (Dongjin byeo), depending on polishing degrees were investigated. The contents of protein, ash, lipid and fiber decreased significantly as the degrees of polishing increased and water uptake of rice grains decreased during hydration. When the surface of the soaked rice grains was examined by the SEM, extensive crack formation was observed. The water binding capacities, swelling power and solubility of rice flour increased as the polishing degree increased. By the amylogram, the initial gelatinization temperatures of rice flour decreased as the polishing degree increased and the peak viscosities, the breakdown and consistency of rice flour increased as the polishing degree increased.

  • PDF

Starch properties of milled rices differing in hydration rates (쌀의 수화 그룹별 전분의 성질)

  • Kim, Chang-Joo;Kim, Sung-Kon;Jae, Jae-Chun;Kwon, Joong-Ho
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 1991
  • Twenty-six japonica and 19 Tongil type milled rices were grouped based on water uptake rate at $23^{\circ}C$ and interrelationships between starch properties and hydration group were investigated. There were no significant differences in relative crystallinity, transmittance increase rate of 0.1% starch suspension and soluble amylose between japonica and Tongil type rices. The gel volume of starch n 3M KSCN solution of Tonsil type rice starch was significantly higher than that of japonica one. However, no correlations were observed between starch properties and hydration groups.

  • PDF

Fundamental Properties of Alkali Activated Slag Mortar with Different Activator Type (자극제의 종류에 따른 알칼리 활성화 슬래그 모르타르의 기초 특성)

  • An, Yang-Jin;Mun, Kyoung-Ju;Soh, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.789-792
    • /
    • 2006
  • The purpose of this study is to investigation the fundamental properties of alkali activated slag of type and concentration of alkali activator. In this paper sodium silicate, sodium carbonate and sodium hydroxide were used as alkaline activator and their concentration were 1, 3, 5 and 7 $Na_2O$ weight percent. The physical properties of alkali activated blast furnace slag cement mortar (AAS) were investigated by flow test and compressive strength. And the hydration properties of AAS characterized by X-ray diffraction and scanning electron microscope. Result show that Alkali activated slag mortar strengths were continuously increased with adding amount and ages. C-S-H were formed to be the main products up to 28days of hydration.

  • PDF

Properties of Autogenous Shrinkage according to Hydration Heat Velocity of High Strength Concrete Considering Mass Member (매스부재를 고려한 고강도콘크리트의 수화발열상승속도 조절에 따른 자기수축 특성)

  • Koo, Kyung-Mo;Kim, Gyu-Yong;Hong, Sung-Hyun;Nam, Jeong-Soo;Shin, Kyoung-Su;Khil, Bae-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • In this study, to reduce the hydration heat velocity (HHV) of high-strength mass concrete at early ages, phase change materials (PCM) that could absorb hydration heat were applied, and the changes in autogenous shrinkage were investigated, as well as the relationship between the hydration temperature and autogenous shrinkage. The acceleration of the cement hydration process by the PCM leads to an early setting and a higher development of the compressive strength and elastic modulus of concrete at very early ages. The function of PCM could be worked below the original melting point due to the eutectic effect, while the hydration temperature and HHV of high-strength mass concrete can be decreased through the use of the PCM. A close relationship was found between the hydration temperature and autogenous shrinkage: the higher the HHV, the greater the ultimate autogenous shrinkage.

Finite Element Analysis on Heat of Hydration with Reinforcing Steel Bars (철근의 영향을 고려한 수화열 유한요소해석)

  • Yoon Dong-Yong;Yang Ok-Bin;Min Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.43-49
    • /
    • 2005
  • In the concrete structures, the magnitude and distribution of the temperature due to the heat of hydration are related to the thermal properties of each component composed of the concrete, the initial temperature, the type of formwork, and the ambient temperature of exposed surfaces. Even though the reinforcing steel bar has completely different thermal properties, it has been excluded. In the thermal analysis on the concrete structures. In this study, finite element analysis was performed on the concrete structures including the reinforcing steel in order to investigate their effect on temperature and stress distribution due to the heat of hydration. As the steel ratio increased, the maximum temperature and the internal-external temperature difference decreased by 32.5% and 10%, respectively. It is clear that the inclusion of reinforcing steel bars on the heat of hydration analysis is indispensable to obtain realistic solutions for the prediction of the maximum temperature and stresses

Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate (경석고 및 황산나트륨을 함유한 하이볼륨 고로슬래그 시멘트의 수화특성)

  • Moon, Gyu-Don;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • In order to use the high-volume slag cement as a construction materials, a proper activator which can improve the latent hydraulic reactivity is required. The dissolved aluminum silicon ions from ground granulated blast furnace slag (GGBFS) react with sulfate ions to form ettringite. The proper formation of ettringite can increase the early-age strength of high-volume GGBFS (80%) cement. The aim of this study is to investigate the hydration properties with sulfate activators (sodium sulfate, anhydrite). In this paper, the effects of $Na_2SO_4$ and $CaSO_4$ on setting, compressive strength, hydration, micro-structure were investigated in high-volume GGBFS cement and compared with those of without activator. Test results indicate that equivalent $SO_3$ content of 3~5% improve the early-age hydration properties such as compressive strength, heat evolution rate, micro-pore structure in high-volume GGBFS cement.

Construction Considering the Difference of Setting Time of Super Retarding Agent for Reduction of Hydration Heat of Footing Mass Concrete (기초 매스콘크리트의 수화열 저감을 위한 초지연제 응결시간차 공법의 현장 적용)

  • 황인성;배정렬;윤석명;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.95-98
    • /
    • 2003
  • This paper presents the results of field experiment to apply the difference of setting tine method using super retarding agent for reducing hydration heat of mass concrete of foundation. According to the results, as the properties of fresh concrete, base concrete satisfies aimed slump and air content, and there is no difference of slump and air content with mixture of super retarding agent. The mixing ratio of super retarding agent is determined for setting time to be retarded by 12 hours in comparison with base concrete, but because the temperature of the air and concrete is low, the difference of setting time is retarded to 24 hours. In man concrete of foundation to which the difference of setting time method is applied, crack by hydration heat is not seen because the lower concrete of super retarding agent generates heat after generation of hydration heat of the upper concrete.

  • PDF

The Influence of Polymer on the Early Hydration of OPC (시멘트의 초기수화에서 폴리머의 영향)

  • Park, Phil-Hwan;Song, Myong-Sin;Lee, Kyoung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.744-749
    • /
    • 2008
  • The properties of the polymer-modified mortars are influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases. Also, this quality of polymer modified cement strongly depend on weather condition and polymer cement ratio. To overcome this problem, polymer-modified cement were prepared by varying polymer/cement mass ratio (P/C) with $0{\sim}20%$ and constant water/cement mass ratio of 0.5. The effect of polymer on the hydration of this polymer cement is studied on different polymer cement ratio. The results showed that the polymer cement paste have increased the viscosity in addition the amount of polymer dosage and the polymers is completed resulting in a reduced degree of hydration caused by different ion elution amount. Also we know that the reactants is calcium acetate as a results of chemical reaction between acetate group in EVA which is hydrolysis in water and $Ca^{2+}$ ion during hydration of cement.

Kinetic Studies on Hydration of Olchal and Hankangchalbyeo Waxy Rices (올찰 및 한강찰벼 찹쌀의 수분흡수 특성)

  • Jang, Myung-Sook;Kim, Sung-Kon;Kim, Bok-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.313-319
    • /
    • 1989
  • Hydration Properties of Olchal(Japonica type) and Hankangchalbyeo $(J{\times}I\;type)$ waxy rices at soaking temperatures of $4-40^{\circ}C$ were examined. The water uptake rate constant of Olchal was greater than that for Hankangchalbyeo. Volume increase rate during hydration of Olchal was faster. The rate constants of hardness decrease during hydration were similar between the two varieties. The Z-value and $Q_{10}$ were $39.7^{\circ}C$ and 1.78, respectively.

  • PDF

A potential review on the influence of nanomaterials on the mechanical properties of high strength concrete

  • P. Jagadesh;Karthik Prabhu ;Moutassim Charai;Ibrahim Y. Hakeem;Emrah Madenci;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.649-666
    • /
    • 2023
  • In the current scenario, conventional concrete faces a substantial challenge in the modern era of the construction industry. Today's structures are massive, featuring innovative designs and strict time constraints. Conventional concrete does not provide the required compressive strength, tensile strength, flexural strength, toughness, and cracking resistance. As a result, most of engineers and professionals prefer to use ultra-high-performance concrete (UHPC), based on its wide advantages. Several advantages like mechanical and durability properties of UHPC provides dominant properties than the traditional concrete. Mix proportions of UHPC consists of higher powder content which provides maximum hydration and pozzolanic reaction, thereby contributing to the enhancement of the UHPC properties. Apart from that the nanomaterials provides the filler behavior, which will further improve the density. Enhanced density and mechanical properties lead to improved durability properties against water absorption and other typical chemicals. Nanomaterials are the most adopted materials for various applications, ranging in size from 0.1 nanometers to 100 nanometers. This article explores the effects of nanomaterial application in UHPC as a replacement for cementitious material or as an additive in the UHPC mix. The physical and durability properties modifications and improvements of UHPC, as well as negative effects, limitations, and shortcomings, are also analyzed.