• Title/Summary/Keyword: hydration of cement

Search Result 886, Processing Time 0.026 seconds

Study on Neutralization Progress Model of Concrete with Coating Finishing Materials in Outdoor Exposure Conditions Based on the Diffusion Reaction of Calcium Hydroxide

  • Park, Jae-Hong;Hasegawa, Takuya;Senbu, Osamu;Park, Dong-Cheon
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.155-163
    • /
    • 2012
  • In order to predict the neutralization of concrete which is the reaction of carbonation dioxide from the outside and cement hydration product, such as calcium hydroxide and C-S-H, it was studied the numerical analysis method considering change of the pore structure and relative humidity during the neutralization reaction. Diffusion-reaction neutralization model was developed to predict the neutralization depth of concrete with coating finishing material. In order to build numerical analysis models considering outdoor environment and finishing materials, the adaption of proposed model was shown the results of existing outdoor exposure test results and accelerated carbonation test.

Properties of Adiabatic Temperature Rise of Concrete Using Different Types of Binder and Effects of Adiabatic Temperature on the Compressive Strength (결합재 종류에 따른 콘크리트의 단열온도상승특성 및 단열온도상승에 따른 압축강도특성에 관한 연구)

  • 하재담;김태홍;이종열;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.527-532
    • /
    • 2001
  • The crack of concrete induced by a temperature rise in early age concrete due to the heat of ration of cement is a serious problem for massive or high strength concrete structures. However, re is still no reasonable equations for the prediction of the temperature rising. On this study, the prediction equations of the heat of hydration of different types of binder are pained from the adiabatic temperature rise test, and compared with the results from different nations to obtain the best approximated equation. The strengths of concrete of which specimens were placed in the same chamber for the adiabatic to were compared with those under standard curing.

  • PDF

Experimental Study on Coefficient of air Convection with boundary layer and boiling effects (경계층과 비등효과를 고려한 외기대류계수에 관한 실험연구)

  • Choi Myoung sung;Kim Yun Yong;Song Young Chul;Woo Sang Kyun;Kim Jin Keun;Lee Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.711-714
    • /
    • 2004
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. In order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, boiling and layer effects. Finally, the prediction model for equivalent coefficient of air convection was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. For determining the initial coefficient of air convection, boiling effects must be considered. The coefficient of air convection is affected by boundary layer with respect to the distance from the surface.

  • PDF

A Numerical Model for Plastic Shrinkage Cracking of Concrete Slab (콘크리트 슬래브의 소성수축균열 해석모델)

  • Kwak Hyo-Gyoung;Ha Soo-Jun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.448-455
    • /
    • 2005
  • In this paper, an analytical model for estimation of the time at which the concrete surface begins to dry is introduced to predict whether or not plastic shrinkage cracks occur. First of all, the validity of a consolidation model for bleeding of cement paste proposed by Tan et al. is verified by comparing the analytical results with the experimental results, and used to evaluate the rate and amount of bleed water of concrete. Also an analytical model for evaporation of bleed water which considers the effect of the temperature variation of concrete surface due to hydration heat on the evaporation rate is proposed, and the experimental and analytical results are then compared to verify the validity of the introduced model. In advance, the time at which the concrete surface begins to dry is estimated using above two analytical models, and compared with the experimental results about the time at which plastic shrinkage cracks occur. From the comparison, it is verified that the proposed model can predict the occurrence of plastic shrinkage cracking with comparative precision.

  • PDF

Synthesis and Properties of Self-hardening Calcium Phosphate Cemetns for Biological Application

  • Song, Tae-Woong;Kim, Han-Yeop
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.129-133
    • /
    • 1997
  • Fine powder of $\alpha$-tricalcium phosphate, tetracalcium phosphate and dicalcium phosphate were mixed together to prepare self-setting cements which form hydroxyapatite, one of the well-known biocompatible materials, as the end of products of hydration. Hardening behaviour of the cements was examined at the temperature range of 37~$70^{\circ}C$ and 150~$250^{\circ}C$ under the normal and hydrothermal condition respectively. The conversion of cements into hydroxyapatite was significantly improved ast elevated temperature and the paste was strengtheed by interlocking of hydroxyapatite crystals, indicating that the strength is determined by microtexture rather the amount of conversion of cements into hydroxyapatite.

  • PDF

Analysis for the Control of Thermal Cracks in a Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 수화열해석)

  • Kim, Sang-Chel;Kim, Yeon-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1205-1210
    • /
    • 2004
  • Cracks in the underground structures are mainly observed due to internal ununiformity of thermal stresses or restraint of structural movement in associate with rapid temperature gradient. Especially, thermal cracks are known to occur easily in a massive structure, but possibility of these depend on the amount of cement applied and ratio of span to height of the structure even though the thickness is less than specification‘s. Thus, this study aims at how to control thermal cracks in a massive subway structure and figures out an optimized construction method and procedure. As results of parametric study for length, height and outer temperature for concrete placement, it is found that hydration heats were not affected by both length and height of concrete placement but thermal stresses were greatly dependent. Most effective ways of controling thermal cracks were to fit a proper ratio of length to height of concrete placement and to decrease temperature of concrete placement as much as possible.

  • PDF

Economic and Fast-track Rehabilitation of Concrete Pavements and Bridge Decks

  • Ramseyer, Chris;Chancellor, Brent;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • The last 10 years have seen considerable growth in the use of proprietary and special repair cements for concrete pavements in the state of Oklahoma. Many of these products lend themselves to "fast track" construction techniques that allow reopening to traffic within 12 hours or less. These products achieve high early strengths by accelerating the Portland cement hydration process for both Type I and Type III cements. In this paper, the important features of a durable repair which include strength, compatibility and bond or adhesion are first discussed. Then the development, testing and field implementation of the aforementioned materials are discussed including the learning curve required to implement a repair system, not just install a new material. Some of the materials discussed, while expensive on a cost per unit basis, hold great promise for economical use on fast track project.

A Study on the Applicability of Estimation of Apparent Activation Energy of Blast Furnace Slag Contained Cement Using Calorimeter (열량계를 이용한 고로슬래그 혼입 페이스트의 겉보기 활성화 에너지 산정에 관한 연구)

  • Kim, Han-Sol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.78-79
    • /
    • 2021
  • It is necessary to calculate Apparent Activation Energy(Ea) in order to apply the equivalent age formula to predict compressive strength using the maturity method. For carbon reduction, it is necessary to consider the change of Ea by condition of GGBFS concrete, which is widely used today. In this study, as a basic study for the design of the compressive strength model of GGBFS concrete, the apparent activation energy of the GGBFS mixed paste was calculated through a calorimeter. The experiment was carried out at a hydration temperature of 10 to 30℃ with a paste test specimen having a GGBFS content of 0 to 80%. As a result, the GGBFS replacement rate of the paste increased, and Ea tended to increase as the temperature decreased.

  • PDF

Optimal Use of MSWI Bottom Ash in Concrete

  • Zhang, Tao;Zhao, Zengzeng
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • An experimental investigation was carried out to evaluate the mechanical properties of concrete mixtures in which coarse aggregate was partially (30, 50 or 70 %) replaced with pre-washed municipal solid waste incineration (MSWI) bottom ash. Results indicated that bottom ash reduced the compressive strength, elastic modulus, and levels of heavy metals in leachate when used as a replacement for gravel, and that the maximum amount of MSWI bottom ash in concrete should not exceed 50 %. To analyze the effect mechanism of bottom ash in concrete, the degree of hydration and the following pozzolanic reaction characterized by the pozzolanic activity index, and the porosity distribution in cement mortar. The study indicates that improved properties of concrete are not solely later strength gain and reduced levels of heavy metals in leachate but also the progression of pozzolanic reactions, where a dense structure contains a higher proportion of fine pores that are related to durability.

Influence of Fly Ash Content with Respect to the Fresh and Mechanical Properties in Concrete (플라이애쉬 함유량이 콘크리트의 굳기전 성질 및 역학적 특성에 미치는 영향)

  • 이진용;최수홍;강석화;이광명
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.25-33
    • /
    • 1999
  • The role of fly ash in concrete become impotant with finding the charateristics of fly ash in which it is used as cement replacement material. An experimental study is carried out to investigate the characteristics of concrete containing fly ash. The loss of slump and air content of fly ash concrete tested up to 120 minutes are lower than those of ordinary concrete, but the setting time and bleeding are increased with increasing fly ash content. The compressive and tensile strength of fly ash concrete are slightly lower than those of ordinary concrete between 7 and 28 days, however, the long-term (at 180 days) compressive strength of fly ash concrete is significantly higher. In addition, fly ash reduces the heat of hydration and peak of temperature rise in concrete.