• Title/Summary/Keyword: hydration of cement

Search Result 884, Processing Time 0.023 seconds

Evaluation of Self-Healing Performance Using Hydration Model of Portland Cement and Clinker (포틀랜드시멘트와 클링커의 수화모델을 이용한 자기치유 성능평가)

  • Choi, Sang-Hyeon;Park, Byoung-Sun;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2020
  • Crack control is essential to increase the durability of concrete significantly. Healing of crack can be controlled by rehydration of unreacted clinkers at the crack surface. In this paper, by comparing the results of isothermal calorimetry test and regression analysis, the Parrot & Killoh's cement hydration model was verified and clink er hydration model was proposed. The composition and quantification of hydration products were simulated by combining kinematic hydration model and thermodynamic model. Hydration simulation was conducted using the verified and proposed hydration model, and the simulation was performed by the substitution rate of clink er. The type and quantity of the final hydration product and healing product were predicted and, in addition, the optimal cementitious material of self-healing concrete was selected using the proposed hydration model.

Statistical Analysis of the Physical Properties in a Slag-OPC-Gypsum System as a Compound Mixing Ratio

  • You, Kwang-Suk;Lee, Kyung-Hoon;Han, Gi-Chun;Kim, Hwan;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.477-482
    • /
    • 2007
  • The effect of the mixing ratio of compounds in a slag-OPC-Gypsum system on the physical properties of Slag cement is investigated in this study. $Na_2SO_4$ was used as an alkali activator. Blast furnace slag cement was prepared from a mixture of blast furnace slag, ordinary Portland cement and anhydride gypsum. The fluidity and the compressive strength according to the ratio of each mixture were analyzed in statistical analyses in order to discover the parameters influencing the fluidity and compressive strength. The results showed that the hydration of blast furnace slag took place with the addition of $Na_2SO_4$ and that column-crystalline ettringite was created as the main hydration product of the blast furnace slag. In addition, it was found that the compressive strength of blast furnace slag cement tends to increase when the ordinary Portland cement content is higher up to three days. However, it is known that the compressive strength tends to increase as the blast furnace slag content becomes higher with increases in the level of OPC after 28 days. As a result of this analysis, it is believed that the ordinary Portland cement content influences the initial compressive strength of blast furnace slag cement, and that in later days this is highly influenced by the slag content.

A Study on Influences of Waterproofing Admixtures for Concrete on Self-Healing Properties of Hardened Cement Paste (시멘트페이스트 경화체의 Self-Healing 특성에 미치는 구체방수재의 영향)

  • Kim, Jae-Young;Byun, Seung-Ho;Ma, Sang-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • This study was performed to get information of self-healing mechanism in cement system and the influence of waterproofing admixtures for concrete on self-healing property. For testing, cement paste specimens cured for 7, 14 and 28 days were prepared and crushed into plate-shape pieces. Screened specimens with thickness not more than 1mm were covered with wet rags and cured in a plastic container for 7 and 28 days. After stopping hydration process of the specimens by treatment with acetone, the surfaces of specimens have been contacted with wet rags were analyzed by XRD, DSC, SEM and EDX. The analysis results showed that cement paste has self-healing property and this property is mainly affected by water. Self-healing in cement system is more effective and faster at an early stage of hydration as there is enough content of unreacted cement to make an additional hydration in this period. The results of this study also showed that waterproofing admixtures for concrete have a considerable effect on self-healing of cement pastes; i.e., they improved self-healing effect of cement and, especially, the specimen using admixture C has shown a lot of needle-like or fibrous hydration products which are estimated as ettringite. It is supposed that these ettringite products are effective to enhance self-healing in cement system.

Effect of Organic Admixture(Calcium Lignosulfonate) (I) on the Early Hydration Process of Protland Cement (시멘트 초기 수화과정에 대한 유기혼화제의 영향(I))

  • 문정연;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.2
    • /
    • pp.143-148
    • /
    • 1984
  • In this study we mainly dealt with the effects of organic retarder(calcium lignosulfate) on the early hydration process of clinker minerals. From a consideration of the hydration process of tricalcium silicate $(C_3S)$ tricalcium silicate $(C_3S)$-tricalcium aluminate $(C_3A)$ tricalcium silicate $(C_3S)$-tetracalcium aluminof-errite $(C_4AF)$ systems with calcium lignosulfate the following results were obtained. 1. when 0.25wt% of CLS was added to $C_3S$ the hydration process was progressed normally but adding of 0.5wt% its hydration was greatly retarded. 2. The hydration of $C_3S$-$C_3A$ system was progressed normally up to 0.5wt% but by adding gypsum its hydration was retarded slightly. 3. The hydration of $C_3S$-$C_4AF$ system was greatly retarded even with 0.25wt% of CLS but by adding gypsum its hydration process was recovered normally.

  • PDF

The characteristics of Low Blaine Cement (저 분말도 포틀랜드 시멘트의 특성)

  • 김재영;전준영;송종택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.13-18
    • /
    • 1998
  • This experiments carried out in order to investigate decreasing of the hydration heat and physical characteristics of the low blaine OPC. The experiments results indicated hydration heat was reduced by about 15% in th low blaine OPC(2300$\textrm{cm}^2$/g). The Mini-slump value of the cement paste was significantly increased and viscosity of one was decreased as blaine value in OPC decrease.

  • PDF

Fundamental Study on the Strength Development of Cement Paste using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 강도발현에 대한 기초적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.407-415
    • /
    • 2013
  • The purpose of this research is to verify the performance of hardening accelerator in cement paste through mechanical performance evaluation and micro structure analysis on hardening accelerator for development of super high early strength concrete. The research results showed that hardening accelerator produced $Ca(OH)_2$ when hydrated with cement, enhancing the degree of saturation of Ca ion by using differential thermal analysis. Moreover, porosity was reduced rapidly as capillary pores were filled by hydration products of $C_3S$. According to the experiment using hydration measurement testing, when 1% and 3% of accelerator were mixed, hydration rate increased toward the second peak point compared to high early strength cement, before the first peak point disappeared. It turned out that adding accelerator accelerated the hydration rate of cement, especially $C_3S$. The shape of C-S-H is shown depending on the amounts of accelerator added and the production and age of $Ca(OH)_2$ by using SEM to observes hydration products. Therefore, it's evident that hardening accelerator used in this research increases amounts of $Ca(OH)_2$ and accelerates $C_3S$, it is effective for the strength development on early age.

Changes in Hydration and Watertightness of Cement Containing Two-Component Fluosilicate Salt Based Chemical Admixture (2성분 규불화염계 혼화제가 첨가된 시멘트의 수화반응 및 수밀성 변화)

  • Kim, Jae-On;Nam, Jae-Hyun;Kim, Do-Su;Khil, Bae-Su;Lee, Byoung-Ky
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.749-755
    • /
    • 2004
  • Fluosilicic acid ($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicate salts prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicate salts to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. In this study, two-component fluosilicate salt based chemical admixtures (MZ) of $4\%,\;6\%$, and $8\%$ concentration were prepared by the reaction of $H_2SiF_6$ ($25\pm2\%$) and metal salts. The effect of concentration of MZ at a constant adding ratio on the hydration and watertightness of cement were investigated respectively. In a cement containing MZ, metal fluorides such as $CaF_2$ and soluble silica by hydrolysis were newly formed during hydration. The total porosity of the hardened cement was lower in the presence of U because of packing role of metal fluoride and pozzolanic reaction of soluble $SiO_2$. Consequently, the watertightness of the hardened paste containing MZ was more improved than non-added (plain) due to an odd hydration between cement and MZ.

A Study on the Reuse of Modified and Quenched Converter Slag as Cement Additives (개질.수쇄한 전로슬래그의 시멘트 혼화재로 활용에 관한 연구)

  • Ko In-Yong;Jin Byung-Sub;Kim Young-Whan
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.23-28
    • /
    • 2003
  • Converter slag was reduced and modified with the addition of 5~10 weight percent of $SiO_2$, $Al_2O_3$ and $SiO_2+Al_2O_3$. which was water quenched and used as a cement additives. Additive was mixed from 10 to 30 weight percent with ordinary portland cement and made 9 kinds of mixed cement. Compressive strength of mixed cement mortar was tested md compared with com pressive strength of ordinary portland cement mortar. Effect of hydration reaction on the compressive strength of cement mortar was investigated by means of x-ray diffraction and scanning electron microscopy.

Mechanical properties of expanded polystyrene beads stabilized lightweight soil

  • Li, Mingdong;Wen, Kejun;Li, Lin;Tian, Anguo
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.459-474
    • /
    • 2017
  • To investigate the mechanical properties of Expanded Polystyrene (EPS) Beads Stabilized Lightweight Soil (EBSLS), Laboratory studies were conducted. Totally 20 sets of specimens according to the complete test design were prepared and tested with unconfined compressive test and consolidated drained triaxial test. Results showed that dry density of EBSLS ($0.67-1.62g/cm^3$) decreases dramatically with the increase of EPS beads volumetric content, while increase slightly with the increase of cement content. Unconfined compressive strength (10-2580 kPa) increases dramatically in parabolic relationship with the increase of cement content, while decreases with the increase of EPS beads volumetric content in hyperbolic relationship. Cohesion (31.1-257.5 kPa) increases with the increase of cement content because it is mainly caused by the bonding function of hydration products of cement. The more EPS beads volumetric content is, the less dramatically the increase is, which is a result of the cohesion between hydration products of cement and EPS beads is less than that between hydration products of cement and sand particles. Friction angle ($14.92-47.42^{\circ}$) decreases with the increase of EPS beads volumetric content, which is caused by the smoother surfaces of EPS beads than sand grains. The stress strain curves of EBSLS tend to be more softening with the increase of EPS beads content or the decrease of cement content. The shear contraction of EBSLS increases with the increase of $c_e$ or the decrease of $c_c$. The results provided quantitative relationships between physico-mechanical properties of EBSLS and material proportion, and design process for engineering application of EBSLS.

A study on the effects of fine sludge powder addition on portland cement-limestone sludge system (포틀랜드시멘트-석회석슬러지계에서의 슬러지 미분말첨가반응 효과에 대한 연구)

  • Ahn, Ji-Whan;Kim, Hwan
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.27-31
    • /
    • 1994
  • We tested the limestone sludge produced in Pohang Iron & Steel Co., Ltd. as a filler powder for the effective use of portland cement. Hydration process was investigated by measuring the hydration rate, the amounts of non-evaporable water and compressive strength of cement-limestone sludge paste prepared by mixing limes-tone sludge with cement. The results obtained in this study can be summarized as follows: 1. There is no significant difference between the cases of adding up to 10% limestone sludge and those of unmixed cement system. However the reaction rate increases in the 5% limestone sludge system(due to the effects of fine). 2. The compressive strength increases proportionally with increasing the measured amount of non-evaporable water, Adding 5% limestone sludge also increases the strength a little higher, and the compressive strength and calcium silicate hydrates. In the case of the mixed limestone sludge, $2\theta$=$11.7^{\circ}$ peak appears in the samples of 28 days hydration. This peak indicted the presence of calcium carboaluminate hydrate. Although limestone sludge is generally regarded as a inert materials, some kinds of cement can produce a calcium carboaluminate by reacting with aluminate in cement pastes.

  • PDF