• Title/Summary/Keyword: hybrid-switching

Search Result 310, Processing Time 0.027 seconds

Strategy for the Seamless Mode Transfer of an Inverter in a Master-Slave Control Independent Microgrid

  • Wang, Yi;Jiang, Hanhong;Xing, Pengxiang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.251-265
    • /
    • 2018
  • To enable a master-slave control independent microgrid system (MSCIMGS) to supply electricity continuously, the microgrid inverter should perform mode transfer between grid-connected and islanding operations. Transient oscillations should be reduced during transfer to effectively conduct a seamless mode transfer. This study uses a typical MSCIMGS as an example and improves the mode transfer strategy in three aspects: (1) adopts a status-tracking algorithm to improve the switching strategy of the outer loop, (2) uses the voltage magnitude and phase pre-synchronization algorithm to reduce transient shock at the time of grid connection, and (3) applies the hybrid-sensitivity $H_{\infty}$ robust controller instead of the current inner loop to improve the robustness of the controller. Simulations and experiments show that the proposed strategy is more practical than the traditional proportional-derivative control mode transfer and effective in reducing voltage and current oscillations during the transfer period.

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

The Future of Flexible Learning and Emerging Technology in Medical Education: Reflections from the COVID-19 Pandemic (포스트 코로나 시대 플렉서블 러닝과 첨단기술 활용 중심의 의학교육 전망과 발전)

  • Park, Jennifer Jihae
    • Korean Medical Education Review
    • /
    • v.23 no.3
    • /
    • pp.147-153
    • /
    • 2021
  • The coronavirus disease 2019 (COVID-19) pandemic made it necessary for medical schools to restructure their curriculum by switching from face-to-face instruction to various forms of flexible learning. Flexible learning is a student-centered approach to learning that has received interest in many educational sectors. It is a critical strategy for expanding access to higher education during the pandemic. As flexible learning includes online, blended, hybrid, and hyflex learning options, learners have the opportunity to select an instruction modality based on their needs and interests. The shift to flexible learning in medical education took place rapidly in response to the COVID-19 pandemic, and learners, instructors, and schools were not prepared for this instructional change. Through the lens of the technology acceptance model, human agency, and a social constructivist perspective, I examine students, instructors, and educational institutions' roles in successfully navigating the digital transformation era. The pandemic has also accelerated the use of advanced information and communication technologies, such as artificial intelligence and virtual reality, in learning. Through a review of the literature, this paper aimed to reflect on current flexible learning practices from the instructional design and educational technology perspective and explore emerging technologies that may be implemented in future medical education.

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

A Hybrid Switching Modulation of Current-Fed Dual-Active-Bridge Converter for Energy Storage System (ESS용 전류원 DAB 컨버터의 하이브리드 스위칭 알고리즘에 관한 연구)

  • Heo, Kyoung-Wook;Choi, Hyun-Jun;Jung, Jee-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.109-111
    • /
    • 2020
  • 본 논문에서는 ESS용 전류원 Dual-Active-Bridge 컨버터의 저 부하 및 고 부하에서의 효율 향상을 위한 하이브리드 스위칭 알고리즘을 제안하고자 한다. 전류원 DAB 컨버터는 인터리브 구조를 이용하여 배터리 단의 입력 전류 리플을 저감할 수 있고, 전력 변환 효율 개선을 위한 다양한 제어 변수를 도입할 수 있는 등의 장점으로 인해 DC 마이크로그리드에서 ESS용 절연형 양방향 DC/DC 컨버터로 주목받고 있다. 그러나 전류원 DAB에서 종래의 전력 제어 방법인 펄스폭 변조 방식과 위상천이가 결합된 방법 (PWM plus Phase Shift, PPS)의 경우 저 부하 조건에서 높은 피크 전류로 인해 도통 손실이 크며, 펄스폭 변조 방식과 이중 위상천이가 결합된 방법(PWM plus Dual Phase Shift, PPDPS)의 경우 고 부하 조건에서 영전압 스위치 영역이 좁아져 효과적이지 않다. 따라서 본 논문에서는 2차 측의 펄스폭과 위상천이를 독립적으로 제어하는 하이브리드 스위칭 알고리즘을 통해 순환전류를 감소시키고 영전압 스위치 영역을 확장시켜 저 부하 및 고 부하 모두에서 효율을 향상시키고자 한다. 1-kW급 전류원 DAB 컨버터 시작품을 통해 제안된 하이브리드 스위칭 알고리즘의 효율성과 타당성을 검증한다.

  • PDF

Design of Software and Hardware Modules for a TCP/IP Offload Engine with Separated Transmission and Reception Paths (송수신 분리형 TCP/IP Offload Engine을 위한 소프트웨어 및 하드웨어 모듈의 설계)

  • Jang Hank-Kok;Chung Sang-Hwa;Choi Young-In
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.691-698
    • /
    • 2006
  • TCP/IP Offload Engine (TOE) is a technology that processes TCP/IP on a network adapter instead of a host CPU to reduce protocol processing overhead from the host CPU. There have been some approaches to implementing TOE: software TOE based on an embedded processor; hardware TOE based on ASIC implementation; and hybrid TOE in which software and hardware functions are combined. In this paper, we designed software modules and hardware modules for a hybrid TOE on an FPGA that had two processor cores. Software modules are based on the embedded Linux. Hardware modules are for data transmission (TX) and reception (RX). One core controls the TX path and the other controls the RX path of the Linux. This TX/RX path separation mechanism can reduce task switching overheads between processes and overcome poor performance of single embedded processor. Hardware modules deal with creating headers for outgoing packets, processing headers of incoming packets, and fetching or storing data from or to the host memory by DMA. These can make it possible to improve the performance of data transmission and reception. We proved performance of the TOE with separated transmission and reception paths by performing experiments with a TOE network adapter that was equipped with the FPGA having processor cores.

Suggestion of a Hybrid Method for Estimating Photovoltaic Power Generation (전력 IT 시스템에서 복합방식의 태양광 발전량 예측 방법 제안)

  • Ju, Woo-Sun;Jang, Min-Seok;Lee, Yon-Sik;Bae, Seok-Chan;Kim, Weon-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.782-785
    • /
    • 2011
  • Needs for MG(Microgrid) development are increasing all over the world as a solution to the problems including the depletion problem of energy resources, the growing demand for electric power and the climatic and environmental change. Especially Photovoltaic power is one of the most general renewable energy resources. However there is a problem of the uniformity of power quality because the power generated from solar light is very sensitive to climate fluctuation (variation of insolation and duration of sunshine, etc). As a solution to the above problem, ESS(Energy Storage System) is considered generally, but it has some limitations. To solve this problem this paper suggests a hybrid estimation method of photovoltaic power generation according to two climatic factors, i.e. insolation and sunshine. This result seems to help design the appropriate capacity of ESS and estimate the proper switching time between DC and AC power in the premises power system and thus maintain the uniformity of power quality.

  • PDF

Universal and Can be Applied Wireless Channel Assignment Algorithm (범용 적용이 가능한 무선채널할당알고리즘)

  • Heo, Seo-Jung;Son, Dong-Cheul;Kim, Chang-Suk
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.375-381
    • /
    • 2012
  • If a mobile station requests a channel allocation in its mobile networks, the switching center assigns a channel to a mobile station that belongs to each base station. There are three kinds of channel allocation schemes; a fixed channel allocation, a dynamic channel allocation and a hybrid combination of these two forms. In assigning a good frequency, it is our intention to provide quality service to our customers as well as to use resources efficiently. This paper proposes methods of assigning frequencies that minimize interference between channels and that also minimize the amount of searching time involved. In this paper, we propose an algorithm to per specific equipment, regardless of the number of channels that can be used as a general-purpose system, such as base stations, control stations, central office model is proposed, the existing operators manner similar to the fixed channel allocation based statistics and assigned when the conventional method and the improved method is proposed. Different ways and compared via simulations to verify the effectiveness of the proposed approach.

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.