• Title/Summary/Keyword: hybrid systems

Search Result 2,645, Processing Time 0.025 seconds

Hybrid Flow Shop with Parallel Machines at the First Stage and Dedicated Machines at the Second Stage

  • Yang, Jaehwan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.22-31
    • /
    • 2015
  • In this paper, a two-stage hybrid flow shop problem is considered. Specifically, there exist identical parallel machines at stage 1 and two dedicated machines at stage 2, and the objective of the problem is to minimize makespan. After being processed by any machine at stage 1, a job must be processed by a specific machine at stage 2 depending on the job type, and one type of jobs can have different processing times on each machine. First, we introduce the problem and establish complexity of several variations of the problem. For some special cases, we develop optimal polynomial time solution procedures. Then, we establish some simple lower bounds for the problem. In order to solve this NP-hard problem, three heuristics based on simple rules such as the Johnson's rule and the LPT (Longest Processing Time first) rule are developed. For each of the heuristics, we provide some theoretical analysis and find some worst case bound on relative error. Finally, we empirically evaluate the heuristics.

A Hybrid Genetic Algorithm for the Location-Routing Problem with Simultaneous Pickup and Delivery

  • Karaoglan, Ismail;Altiparmak, Fulya
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • In this paper, we consider the Location-Routing Problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. Since the LRPSPD is an NP-hard problem, we propose a hybrid heuristic approach based on genetic algorithms (GA) and simulated annealing (SA) to solve the problem. To evaluate the performance of the proposed approach, we conduct an experimental study and compare its results with those obtained by a branch-and-cut algorithm on a set of instances derived from the literature. Computational results indicate that the proposed hybrid algorithm is able to find optimal or very good quality solutions in a reasonable computation time.

Design of Magnetic Levitating Flywheel Energy Storage System (자기부상형 플라이휠 에너지 저장 장치의 자기베어링 시스템 설계)

  • Yoo, S.;Mo, S.;Choi, S.;Lee, J.;Han, Y.;Noh, M.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.963-967
    • /
    • 2007
  • Flywheel energy storage systems (FESS) have advantages over other types of energy storage methods due to their infinite charge/discharge cycles and environmental friendliness. The system has two radial bearings and one hybrid-thrust bearing. Thrust hybrid-type bearing use permanent magnet to relieve gravity load. The radial bearings were designed to provide sufficient force slew rate considering the unbalance disturbance at the operating speeds. In this paper, we will derive dynamic model of hybrid-type bearing using permanent magnet for thrust bearing and present simulation and stability of the model.

  • PDF

A study on the Interlock Circuit Abnormality of High Voltage System in HEV (하이브리드자동차 고전압 시스템 인터록 회로 이상 시 미치는 영향에 관한 연구)

  • Song, Rak Hyun;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • Recently, global warming has been accelerated due to air pollution and air pollutants are coming from the exhaust of the ICE vehicles, which are gradually increasing in number globally. That is why all the countries in the world are striving to reduce pollutant emissions of automobiles by strengthening regulations on air pollution. To comply with the regulations, the auto industry came up with hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid vehicles show improvements in emissions, fuel efficiency, as well as functions as electric vehicles. This study aims to show possible troubles that occur at times of damages in high-voltage systems, and to suggest responsive measures.

Robust optimization of a hybrid control system for wind-exposed tall buildings with uncertain mass distribution

  • Venanzi, Ilaria;Materazzi, Annibale Luigi
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.641-659
    • /
    • 2013
  • In this paper is studied the influence of the uncertain mass distribution over the floors on the choice of the optimal parameters of a hybrid control system for tall buildings subjected to wind load. In particular, an optimization procedure is developed for the robust design of a hybrid control system that is based on an enhanced Monte Carlo simulation technique and the genetic algorithm. The large computational effort inherent in the use of a MC-based procedure is reduced by the employment of the Latin Hypercube Sampling. With reference to a tall building modeled as a multi degrees of freedom system, several numerical analyses are carried out varying the parameters influencing the floors' masses, like the coefficient of variation of the distribution and the correlation between the floors' masses. The procedure allows to obtain optimal designs of the control system that are robust with respect to the uncertainties on the distribution of the dead and live loads.

Sliding mode control based on neural network for the vibration reduction of flexible structures

  • Huang, Yong-An;Deng, Zi-Chen;Li, Wen-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.377-392
    • /
    • 2007
  • A discrete sliding mode control (SMC) method based on hybrid model of neural network and nominal model is proposed to reduce the vibration of flexible structures, which is a robust active controller developed by using a sliding manifold approach. Since the thick boundary layer will reduce the virtue of SMC, the multilayer feed-forward neural network is adopted to model the uncertainty part. The neural network is trained by Levenberg-Marquardt backpropagation. The design objective of the sliding mode surface is based on the quadratic optimal cost function. In course of running, the input signal of SMC come from the hybrid model of the nominal model and the neural network. The simulation shows that the proposed control scheme is very effective for large uncertainty systems.

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS

  • KIM JUNSEOK;SUR JEANMAN
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.179-193
    • /
    • 2005
  • We present results of fully nonlinear time-dependent simulations of a thin liquid film flowing up an inclined plane. Equations of the type $h_t+f_y(h) = -{\in}^3{\nabla}{\cdot}(M(h){\nabla}{\triangle}h)$ arise in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, t) is the fluid film height. A hybrid scheme is constructed for the solution of two-dimensional higher-order nonlinear diffusion equations. Problems in the fluid dynamics of thin films are solved to demonstrate the accuracy and effectiveness of the hybrid scheme.

Design Space Exploration Environment for Hybrid Systems based on Extended Y-chart (Hybrid 시스템을 위한 확장된 Y-chart를 이용한 설계 공간 탐색 환경)

  • 안성용;이정아
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.1146-1150
    • /
    • 2002
  • 멀티미디어 데이터 처리나 암호화 알고리즘같은 계산량이 많고 마른 시간안에 처리되어야하는 어플리케이션들을 처리하기 위하여 최근의 컴퓨팅 환경은 재구성가능한 시스템과 일반적인 마이크로 프로세서가 결합된 시스템을 폭넓게 활용하고 있다. 이러한 시스템의 시장적응성을 높이기 위해서는 프로토타입을 제작하기 전에 설계변수에 따른 성능수치를 이미 예측하여 최소의 비용으로 시스템의 수행시간 및 자원제약사향을 만족할 수 있는 구조를 찾아내는 것이 필수적이다. 본 논문에서는 Y-chart 설계방법의 기본 개념을 Hybrid 시스템에 적용가능하도록 확장하여, 재구성 가능한 시뮬레이터를 개발하였고, 이를 기반으로 H.263 인코더 모델을 어플리케이션모델로 하고 FPGA와 일반적인 프로세서를 사용하는 가상의 시스템을 하드웨어 모델로하여 설계공간탐색을 진행하였다. 설계공간 탐색을 통한 시뮬레이션 결과는 시스템 설계자들에게 실제 포로토타입을 구축하지 않고 최적의 설계변수를 결정할 수 있게 하여 설계시간과 설계비용을 현저하게 줄여줄 것으로 기대된다.

  • PDF

Fluctuating Reduction Method for Generation Power of the Wind-PV Hybrid System

  • Oh, Jin-Seok;Lee, Ji-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.80-85
    • /
    • 2004
  • This paper reports the performance of a CB (Circuit Breaker) and converter for the battery operated Wind-PV (Photovoltaic) system. For this purpose, a fluctuating reduction controller for an electric generation hybrid (wind+PV) system is suggested. The method operates a wind turbine, PV, CB, converter and battery. Integration of wind and PV sources, which are generally complementary, usually reduce the capacity of the battery. Also, CB controls the overvoltage of the generation system. The objective is to control the operation of the converter and the CB and reduce power fluctuation. This paper includes discussion on system performance, power quality, fluctuation and effect of the randomness of the wind.