DOI QR코드

DOI QR Code

A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS

  • KIM JUNSEOK (Department of Mathematics University of California) ;
  • SUR JEANMAN (Department of Physics Center for Nonlinear and Complex Systems Duke University)
  • Published : 2005.01.01

Abstract

We present results of fully nonlinear time-dependent simulations of a thin liquid film flowing up an inclined plane. Equations of the type $h_t+f_y(h) = -{\in}^3{\nabla}{\cdot}(M(h){\nabla}{\triangle}h)$ arise in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, t) is the fluid film height. A hybrid scheme is constructed for the solution of two-dimensional higher-order nonlinear diffusion equations. Problems in the fluid dynamics of thin films are solved to demonstrate the accuracy and effectiveness of the hybrid scheme.

Keywords

References

  1. A. L. Bertozzi and M. P. Brenner, Linear stability and transient growth in driven contact lines, Phys. Fluids 9 (1997), 530-539 https://doi.org/10.1063/1.869217
  2. A. L. Bertozzi, A. Munch, X. Fanton, and A.M. Cazabat, Contact line stabil- ity and 'undercompressive shocks' in driven thin film fiow, Phys. Rev. Lett. 81 (1998), 5169-5172 https://doi.org/10.1103/PhysRevLett.81.5169
  3. A. L. Bertozzi, A. Munch, and M. Shearer, Undercompressive shocks in thin film flows, Phys. D 134 (1999), 431-464 https://doi.org/10.1016/S0167-2789(99)00134-7
  4. C. H. Ho and Y. C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30 (1998), 579-612 https://doi.org/10.1146/annurev.fluid.30.1.579
  5. T. G. Myers, Thin films with high surface tension, SIAM Rev. 40 (1998), 441-462 https://doi.org/10.1137/S003614459529284X
  6. C. W. Shu and S. Osher, Efficient implementation of essentially non- oscillatory shock capturing schems II, J. Comput. Phys. 83 (1989), 32-78 https://doi.org/10.1016/0021-9991(89)90222-2
  7. S. M. Troian, E. Herbolzheimer, S. A. Safran, and J. F. Joanny, Fingering instability of driven spreading films, Europhys. Lett. 10 (1989), 25-30 https://doi.org/10.1209/0295-5075/10/1/005
  8. U. Trottenberg, C. Oosterlee and A. Schuller, Multigrid, Academic press, 2001

Cited by

  1. Adaptive mesh refinement for simulation of thin film flows vol.49, pp.1, 2014, https://doi.org/10.1007/s11012-013-9788-6
  2. Numerical studies of the fingering phenomena for the thin film equation vol.67, pp.11, 2011, https://doi.org/10.1002/fld.2420