• Title/Summary/Keyword: hybrid systems

Search Result 2,645, Processing Time 0.031 seconds

An Improved Coyote Optimization Algorithm-Based Clustering for Extending Network Lifetime in Wireless Sensor Networks

  • Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1873-1893
    • /
    • 2023
  • The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.

Finite Element Analysis Study of CJS Composite Structural System with CFT Columns and Composite Beams (CFT기둥과 합성보로 구성된 CJS합성구조시스템의 유한요소해석 연구)

  • Moon, A Hae;Shin, Jiuk;Lim, Chang Gue;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • This paper presents the effect on the inelastic behavior and structural performance of concrete and filled steel pipe through a numerical method for reliable judgment under various load conditions of the CJS composite structural system. Variable values optimized for the CJS synthetic structural system and the effects of multiple variables used for finite element analysis to present analytical modeling were compared and analyzed with experimental results. The Winfrith concrete model was used as a concrete material model that describes the confinement effect well, and the concrete structure was modeled with solid elements. Through geometric analysis of shell and solid elements, rectangular steel pipe columns and steel elements were modeled as shell elements. In addition, the slip behavior of the joint between the concrete column and the rectangular steel pipe was described using the Surface-to-Surface function. After finite element analysis modeling, simulation was performed for cyclic loading after assuming that the lower part of the foundation was a pin in the same way as in the experiment. The analysis model was verified by comparing the calculated analysis results with the experimental results, focusing on initial stiffness, maximum strength, and energy dissipation capability.

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Cyber Threat Intelligence Traffic Through Black Widow Optimisation by Applying RNN-BiLSTM Recognition Model

  • Kanti Singh Sangher;Archana Singh;Hari Mohan Pandey
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.99-109
    • /
    • 2023
  • The darknet is frequently referred to as the hub of illicit online activity. In order to keep track of real-time applications and activities taking place on Darknet, traffic on that network must be analysed. It is without a doubt important to recognise network traffic tied to an unused Internet address in order to spot and investigate malicious online activity. Any observed network traffic is the result of mis-configuration from faked source addresses and another methods that monitor the unused space address because there are no genuine devices or hosts in an unused address block. Digital systems can now detect and identify darknet activity on their own thanks to recent advances in artificial intelligence. In this paper, offer a generalised method for deep learning-based detection and classification of darknet traffic. Furthermore, analyse a cutting-edge complicated dataset that contains a lot of information about darknet traffic. Next, examine various feature selection strategies to choose a best attribute for detecting and classifying darknet traffic. For the purpose of identifying threats using network properties acquired from darknet traffic, devised a hybrid deep learning (DL) approach that combines Recurrent Neural Network (RNN) and Bidirectional LSTM (BiLSTM). This probing technique can tell malicious traffic from legitimate traffic. The results show that the suggested strategy works better than the existing ways by producing the highest level of accuracy for categorising darknet traffic using the Black widow optimization algorithm as a feature selection approach and RNN-BiLSTM as a recognition model.

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.

Design and Implementation of Clipcast Service via Terrestrial DMB (지상파 DMB를 이용한 클립캐스트 서비스 설계 및 구현)

  • Cho, Suk-Hyun;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • Design and Implementation of Clipcast Service via Terrestrial DMB This paper outlines the system design and the implementation process of clipcast service that can send clips of video, mp3, text, images, etc. to terrestrial DMB terminals. To provide clipcast service in terrestrial DMB, a separate data channel needs to be allocated and this requires changes in the existing bandwidth allocation. Clipcast contents can be sent after midnight at around 3 to 4 AM, when terrestrial DMB viewship is low. If the video service bit rate is lowered to 352 Kbps and the TPEG service band is fully used, then 320 Kbps bit rate can be allocated to clipcast. To enable clipcast service, the terminals' DMB program must be executed, and this can be done through SMS and EPG. Clipcast service applies MOT protocol to transmit multimedia objects, and transmits twice in carousel format for stable transmission of files. Therefore, 72Mbyte data can be transmitted in one hour, which corresponds to about 20 minutes of full motion video service at 500Kbps data rate. When running the clip transmitted through terrestrial DMB data channel, information regarding the length of each clip is received through communication with the CMS(Content Management Server), then error-free files are displayed. The clips can be provided to the users as preview contents of the complete VOD contents. In order to use the complete content, the user needs to access the URL allocated for that specific content and download the content by completing a billing process. This paper suggests the design and implementation of terrestrial DMB system to provide clipcast service, which enables file download services as provided in MediaFLO, DVB-H, and the other mobile broadcasting systems. Unlike the other mobile broadcasting systems, the proposed system applies more reliable SMS method to activate the DMB terminals for highly stable clipcast service. This allows hybrid, i.e, both SMS and EPG activations of terminals for clipcast services.

Study of the ENC reduction for mobile platform (모바일 플랫폼을 위한 전자해도 소형화 연구)

  • 심우성;박재민;서상현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.181-186
    • /
    • 2003
  • The satellite navigation system is widely used for identifying a user's position regardless of weather or geographic conditions and also make effect on new technology of marine LBS(Location Based Service), which has the technology of geographic information such as the ENC. Generally, there are conceivable systems of marine LBS such as ECDIS, or ECS that use the ENC itself with powerful processor in installed type on ships bridge. Since the ENC is relatively heavy structure with dummy format for data transfer between different systems, we should reduce the ENC to small and compact size in order to use it in mobile platform. In this paper, we assumed that the mobile system like PDA, or Webpad can be used for small capability of mobile platform. However, the ENC should be updated periodically by update profile data produced by HO. If we would reduce the ENC without a consideration of update, we could not get newly updated data furthermore. As summary, we studied considerations for ENC reduction with update capability. It will make the ENC be useful in many mobile platforms for various applications.

  • PDF

Hightechnology industrial development and formation of new industrial district : Theory and empirical cases (첨단산업발전과 신산업지구 형성 : 이론과 사례)

  • ;Park, Sam Ock
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.2
    • /
    • pp.117-136
    • /
    • 1994
  • Contemporary global space economy is so dynamic that any one specific structural force can not explain the whole dynamic processes or trajectories of spatial industrial development. The major purpose of this paper is extending the traditional notion of industrial districts to functioning and development of new industrial districts with relation to the development of high technology industries. Several dynamic forces, which are dominated in new industrial districts in the modern space economy, are incorporated in the formation and dynamic aspects of new industrial districts. Even though key forces governing Marshallian industrial district are localization of small firms, division of labor between firms, constructive cooperation, and industrial atmosphere, Marshall points out a possibility of growing importance of large firms and non-local networks in the districts with changes of external environments. Some of Italian industrial districts can be regarded as Marshallian industrial districts in broader context, but the role of local authorities or institutions and local embeddedness seem to be more important in the Italian industrial districts. More critical implication form the review of Marshallian industrial districts and Italian industrial districts is that the industrial districts are not a static concept but a dynamic one: small firm based industrial districts can be regarded as only a specific feature evolved over time. Dynamic aspects of new industrial districts are resulting from coexistence of contrasting forces governing the functioning and formation of the districts in contemporary global space economy. The contrasting forces governing new industrial districts are coexistence of flexible and mass production systems, local and global networks, local and non-local embeddedness, and small and large firms. Because of these coexistence of contrasting forces, there are various types of new industrial districts. Nine types of industrial districts are identified based on local/non-local networks and intensity of networks in both suppliers and customers linkages. The different types of new industrial districts are described by differences in production systems, embeddedness, governance, cooperation and competition, and institutional factors. Out of nine types of industrial districts, four types - Marshallian; suppliers hub and spoke; customers hub and spoke; and satellite - are regarded as distinctive new industrial districts and four additional types - advanced hub and spoke types (suppliers and customers) and mature satellites (suppliers and customers) - can be evolved from the distinctive types and may be regarded as hybrid types. The last one - pioneering high technology industrial district - can be developed from the advanced hub and spoke types and this type is a most advanced modern industrial district in the era of globalization and high technology. The dynamic aspects of the districts are related with the coexistence of the contrasting forces in the contemporary global space economy. However, the development trajectory is not a natural one and not all the industrial districts can develop to the other hybrid types. Traditionally, localization of industries was developed by historical chances. In the process of high technology industrial development in contemporary global space economy, however, policy and strategies are critical for the formation and evolution of new industrial districts. It needs formation of supportive tissues of institutions for evolution of dyamic pattern of high technology related new industrial districts. Some of the original distinctive types of new industrial districts can not follow the path or trajectory suggested in this paper and may be declined without advancing, if there is no formation of supportive social structure or policy. Provision of information infrastructure and diffusion of an entrepreneurship through the positive supports of local government, public institutions, universities, trade associations and industry associations are important for the evolution of the dynamic new industrial districts. Reduction of sunk costs through the supports for training and retraining of skilled labor, the formation of flexible labor markets, and the establishment of cheap and available telecommunication networks is also regarded as a significant strategies for dynamic progress of new industrial districts in the era of high technology industrial development. In addition, development of intensive international networks in production, technology and information is important policy issue for formation and evolution of the new industrial districts which are related with high technology industrial development.

  • PDF