• Title/Summary/Keyword: hybrid systems

Search Result 2,645, Processing Time 0.051 seconds

Optimal Design of Nonlinear Squeeze Film Damper Using Hybrid Global Optimization Technique

  • Ahn Young-Kong;Kim Yong-Han;Yang Bo-Suk;Ahn Kyoung-Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1125-1138
    • /
    • 2006
  • The optimal design of the squeeze film damper (SFD) for rotor system has been studied in previous researches. However, these researches have not been considering jumping or nonlinear phenomena of a rotor system with SFD. This paper represents an optimization technique for linear and nonlinear response of a simple rotor system with SFDs by using a hybrid GA-SA algorithm which combined enhanced genetic algorithm (GA) with simulated annealing algorithm (SA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is to minimize the transmitted load between SFD and foundation at the operating and critical speeds of the rotor system with SFD which has linear and nonlinear unbalance responses. The numerical results show that the transmitted load of the SFD is greatly reduced in linear and nonlinear responses for the rotor system.

A New Approach for Information Security using an Improved Steganography Technique

  • Juneja, Mamta;Sandhu, Parvinder Singh
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.405-424
    • /
    • 2013
  • This research paper proposes a secured, robust approach of information security using steganography. It presents two component based LSB (Least Significant Bit) steganography methods for embedding secret data in the least significant bits of blue components and partial green components of random pixel locations in the edges of images. An adaptive LSB based steganography is proposed for embedding data based on the data available in MSB's (Most Significant Bits) of red, green, and blue components of randomly selected pixels across smooth areas. A hybrid feature detection filter is also proposed that performs better to predict edge areas even in noisy conditions. AES (Advanced Encryption Standard) and random pixel embedding is incorporated to provide two-tier security. The experimental results of the proposed approach are better in terms of PSNR and capacity. The comparison analysis of output results with other existing techniques is giving the proposed approach an edge over others. It has been thoroughly tested for various steganalysis attacks like visual analysis, histogram analysis, chi-square, and RS analysis and could sustain all these attacks very well.

Thermal Analysis of a Battery Cooling System with Aluminum Cooling Plates for Hybrid Electric Vehicles and Electric Vehicles (알루미늄 냉각 판을 이용한 하이브리드/전기차용 배터리 냉각시스템의 수치적 연구)

  • Baek, Seungki;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The battery cells in lithium-ion battery pack assembled with high-capacity and high-power pouch cells, are commonly cooled with thin aluminum cooling plates in contact with the cells. For HEV/EV lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. Thin aluminum cooling plates are cooled by cold plate with coolant flow paths. In this study, the effect of the battery cooling system design including aluminum cooling plate thickness and various position of cold plate on the cooling performance are investigated by using finite element methods (FEM). Optimal cooling plate and cold plate design are proposed for improving the uniformity in temperature distributions as well as lowering average temperature for the cells with large capacities based on the simulation results.

Active vibration isolation of a hydraulic system using the hetero-synaptic neural network (헤테로-시넵틱 신경회로망을 이용한 유압시스템의 진동제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.273-277
    • /
    • 1995
  • Many hudraulic components have nonlinearities to some extent. These nonlinearities often cause the time delay, thus degrading the performance of the hydraulic control systems and making it difficult to modelthem. In this paper, a new vibration isolation control algorithm that eliminates the necessity of a sophiscated modeling of hydraulic system was proposed. The algotithm is a hybrid type control shecheme consisting of a linear controller and a hetero-synaptic neural network controller. Using this control scheme, simulations and experiments were performed for 1 DOF(Degree of freedom) and 2 DOF vibration isolation. The hybrid type control algorithm can isolate the base vibration signifcantly rather than linear control algorithm. And from the weights in hetero-synaptic neural network, we can get the 2nd equivalent differentialmodel of the hydraulic control system with on-line control operation. This equivalent model provides us with much information, such as stability and the characteristics of the control system.

  • PDF

Lightweight Named Entity Extraction for Korean Short Message Service Text

  • Seon, Choong-Nyoung;Yoo, Jin-Hwan;Kim, Hark-Soo;Kim, Ji-Hwan;Seo, Jung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.560-574
    • /
    • 2011
  • In this paper, we propose a hybrid method of Machine Learning (ML) algorithm and a rule-based algorithm to implement a lightweight Named Entity (NE) extraction system for Korean SMS text. NE extraction from Korean SMS text is a challenging theme due to the resource limitation on a mobile phone, corruptions in input text, need for extension to include personal information stored in a mobile phone, and sparsity of training data. The proposed hybrid method retaining the advantages of statistical ML and rule-based algorithms provides fully-automated procedures for the combination of ML approaches and their correction rules using a threshold-based soft decision function. The proposed method is applied to Korean SMS texts to extract person's names as well as location names which are key information in personal appointment management system. Our proposed system achieved 80.53% in F-measure in this domain, superior to those of the conventional ML approaches.

A Hybrid Positioning System for Indoor Navigation on Mobile Phones using Panoramic Images

  • Nguyen, Van Vinh;Lee, Jong-Weon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.835-854
    • /
    • 2012
  • In this paper, we propose a novel positioning system for indoor navigation which helps a user navigate easily to desired destinations in an unfamiliar indoor environment using his mobile phone. The system requires only the user's mobile phone with its basic equipped sensors such as a camera and a compass. The system tracks user's positions and orientations using a vision-based approach that utilizes $360^{\circ}$ panoramic images captured in the environment. To improve the robustness of the vision-based method, we exploit a digital compass that is widely installed on modern mobile phones. This hybrid solution outperforms existing mobile phone positioning methods by reducing the error of position estimation to around 0.7 meters. In addition, to enable the proposed system working independently on mobile phone without the requirement of additional hardware or external infrastructure, we employ a modified version of a fast and robust feature matching scheme using Histogrammed Intensity Patch. The experiments show that the proposed positioning system achieves good performance while running on a mobile phone with a responding time of around 1 second.

Hybrid No-Reference Video Quality Assessment Focusing on Codec Effects

  • Liu, Xingang;Chen, Min;Wan, Tang;Yu, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.592-606
    • /
    • 2011
  • Currently, the development of multimedia communication has progressed so rapidly that the video program service has become a requirement for ordinary customers. The quality of experience (QoE) for the visual signal is of the fundamental importance for numerous image and video processing applications, where the goal of video quality assessment (VQA) is to automatically measure the quality of the visual signal in agreement with the human judgment of the video quality. Considering the codec effect to the video quality, in this paper an efficient non-reference (NR) VQA algorithm is proposed which estimates the video quality (VQ) only by utilizing the distorted video signal at the destination. The VQA feature vectors (FVs) which have high relationships with the subjective quality of the distorted video are investigated, and a hybrid NR VQA (HNRVQA) function is established by considering the multiple FVs. The simulation results, testing on the SDTV programming provided by VCEG Phase I, show that the proposed algorithm can represent the VQ accurately, and it can be used to replace the subjective VQA to measure the quality of the video signal automatically at the destinations.

Hybrid SDF-HDF Cluster-Based Fusion Scheme for Cooperative Spectrum Sensing in Cognitive Radio Networks

  • El-Saleh, Ayman A.;Ismail, Mahamod;Ali, Mohd Alaudin Mohd;Arka, Israna H.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1023-1041
    • /
    • 2010
  • In cognitive radio networks, cooperative spectrum sensing schemes are proposed to improve the performance of detecting licensees by secondary users. Commonly, the cooperative sensing can be realized by means of hard decision fusion (HDF) or soft decision fusion (SDF) schemes. The SDF schemes are superior to the HDF ones in terms of the detection performance whereas the HDF schemes are outperforming the SDF ones when the traffic overhead is taken into account. In this paper, a hybrid SFD-HDF cluster-based approach is developed to jointly exploit the advantages of SFD and HDF schemes. Different SDF schemes have been proposed and compared within a given cluster whereas the OR-rule base HDF scheme is applied to combine the decisions reported by cluster headers to a common receiver or base station. The computer simulations show promising results as the performance of the proposed scenario of hybridizing soft and hard fusion schemes is significantly outperforming other different combinations of conventional SDF and HDF schemes while it noticeably reduces the network traffic overhead.

Speaker Adaptation Using i-Vector Based Clustering

  • Kim, Minsoo;Jang, Gil-Jin;Kim, Ji-Hwan;Lee, Minho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2785-2799
    • /
    • 2020
  • We propose a novel speaker adaptation method using acoustic model clustering. The similarity of different speakers is defined by the cosine distance between their i-vectors (intermediate vectors), and various efficient clustering algorithms are applied to obtain a number of speaker subsets with different characteristics. The speaker-independent model is then retrained with the training data of the individual speaker subsets grouped by the clustering results, and an unknown speech is recognized by the retrained model of the closest cluster. The proposed method is applied to a large-scale speech recognition system implemented by a hybrid hidden Markov model and deep neural network framework. An experiment was conducted to evaluate the word error rates using Resource Management database. When the proposed speaker adaptation method using i-vector based clustering was applied, the performance, as compared to that of the conventional speaker-independent speech recognition model, was improved relatively by as much as 12.2% for the conventional fully neural network, and by as much as 10.5% for the bidirectional long short-term memory.

A Hybrid Mechanism of Particle Swarm Optimization and Differential Evolution Algorithms based on Spark

  • Fan, Debin;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5972-5989
    • /
    • 2019
  • With the onset of the big data age, data is growing exponentially, and the issue of how to optimize large-scale data processing is especially significant. Large-scale global optimization (LSGO) is a research topic with great interest in academia and industry. Spark is a popular cloud computing framework that can cluster large-scale data, and it can effectively support the functions of iterative calculation through resilient distributed datasets (RDD). In this paper, we propose a hybrid mechanism of particle swarm optimization (PSO) and differential evolution (DE) algorithms based on Spark (SparkPSODE). The SparkPSODE algorithm is a parallel algorithm, in which the RDD and island models are employed. The island model is used to divide the global population into several subpopulations, which are applied to reduce the computational time by corresponding to RDD's partitions. To preserve population diversity and avoid premature convergence, the evolutionary strategy of DE is integrated into SparkPSODE. Finally, SparkPSODE is conducted on a set of benchmark problems on LSGO and show that, in comparison with several algorithms, the proposed SparkPSODE algorithm obtains better optimization performance through experimental results.