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Abstract 
 

We propose a novel speaker adaptation method using acoustic model clustering. The similarity 
of different speakers is defined by the cosine distance between their i-vectors (intermediate 
vectors), and various efficient clustering algorithms are applied to obtain a number of speaker 
subsets with different characteristics. The speaker-independent model is then retrained with 
the training data of the individual speaker subsets grouped by the clustering results, and an 
unknown speech is recognized by the retrained model of the closest cluster. The proposed 
method is applied to a large-scale speech recognition system implemented by a hybrid hidden 
Markov model and deep neural network framework. An experiment was conducted to evaluate 
the word error rates using Resource Management database. When the proposed speaker 
adaptation method using i-vector based clustering was applied, the performance, as compared 
to that of the conventional speaker-independent speech recognition model, was improved 
relatively by as much as 12.2% for the conventional fully neural network, and by as much as 
10.5% for the bidirectional long short-term memory. 
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1. Introduction 

The performance of a speech recognition system is largely dependent on the choice training 
dataset. If the speaking styles of a target speaker including speaking rates and pronunciation 
variations are different to those in the training dataset, the speech recognition model is not 
suited to the target speaker and the performance drops proportionally to this difference. In the 
case that the entire dataset is composed of speakers with too many different speaking styles, 
the unified speaker-independent (SI) model may not be trained reliably because of too many 
intra-unit variabilities. 

To solve the problem of this mismatch between training and testing, many speaker 
adaptation methods have been proposed, including maximum likelihood linear regression 
(MLLR) [1] and eigenvoice projection [2]. These methods are based on the assumptions that 
speaker variations can be correctly modeled by a linear transformation. A more general 
approach has been proposed using maximum a posteriori (MAP) parameter estimation [3]. 
However, all of the aforementioned adaptation methods are tightly coupled with multivariate 
Gaussian probability density functions, so they can be applied only to hidden Markov models 
(HMM) with their observation probabilities modeled by a mixture of Gaussians. Therefore, 
these methods cannot be applied to other observation probability models such as artificial 
neural networks. 

This study proposes a novel method for speaker adaptation. The proposed method performs 
clustering of speakers in the training dataset based on i-vector similarities [4, 5] given 
speaker-specific training data. It then generates cluster-specific, adapted models by retraining 
the unified SI model using training data of the corresponding cluster. The SI model is obtained 
by a hybrid hidden Markov model and deep neural network (HMM-DNN) [6-9] with the 
training data of all the speakers. In addition, the number of speaker group-dependent models 
equal to the number of clusters. We also propose a means of choosing the best model using 
i-vector similarity. 

Section 2 presents related work on i-vector extraction method, and HMM-DNN speech 
recognition system. Section 3 describes i-vector based similarity and speaker clustering 
procedure that are based on it. The section also describes the method for recognizing an 
unknown sentence using the clustered models. Section 4 presents experimental results of the 
large-scale speech recognition system based on a resource management (RM) database [10] 
and describes the performance improvement derived from using the proposed method. 

2. Related Work 
Speaker recognition is a task of identifying different characteristics of various human speakers 
and applying them in such a manner that two or more speakers can be distinguished. To model 
effectively the characteristics of speech signals spoken by the given speakers, Gaussian 
mixture models (GMM) based on the universal background model (UBM) [11] have been 
shown to be effective. Joint factor analysis (JFA) [12] finds two subspaces that represent the 
speaker and channel variabilities, respectively. Based on the subspace assumption, the GMM 
supervector M can be modeled as follows: 

 M = m + Tw ,  (1) 
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where m denotes a speaker and channel independent supervector often constructed by a UBM 
model parameters, T is a low rank matrix that is the basis of the reduced total variability space, 
and w represents total factors distributed as a standard normal random variable [13, 14]. Most 
of the speaker information is assumed to be present in the total factor vector w. Therefore, it is 
referred to as an intermediate vector (i-vector). This speaker information represented by the 
i-vector can be used to measure the similarity between speakers. 

Several steps as shown in Fig. 1 extracts the i-vector. In the first step, sixty-dimensional 
multi-taper mel-frequency cepstral coefficient (MFCC) features [15, 16] are extracted from 
the training data. The multi-taper features are obtained by splicing together 3 frames on each 
side of the center frame of 13-dimensional MFCCs, resulting in  7 × 13 = 91 dimensions, and 
they are projected down to 40 using linear discriminant analysis (LDA). On the 
LDA-projected MFCCs, a single semi-tied covariance (STC) transform [17] is performed, and 
additional 20 features are added. The combined, 60-dimensional features are referred to as 
LDA+STC [15] and used as an input to the i-vector extractor. The GMM-UBM using 
full-covariance GMMs with 512 components is trained using Baum-Welch statistics 
extraction [18]. All the parameters of the trained GMM-UBM are converted into a single 
supervector, and reduced to 100 dimensional i-vectors using the i-vector extractor (the total 
variability matrix T). 

In addition, we used the HMM-DNN hybrid speech recognition model as a baseline. This 
model is developed using an open-source Kaldi toolkit [19], and trained using frame-based 
cross-entropy and different sequence-discriminative criteria. The Kaldi toolkit supports 
stochastic gradient descent learning using restricted Boltzmann machine (RBM) prerequisite 
[6, 9, 20] and NVidia graphics processing unit. 

 

 
Fig. 1. GMM-UBM based i-vector extractor. 

3. Proposed Methods 

3.1 Speaker Similarity Measure 
The similarity of a pair of speakers is defined by the proximity of the subspaces spanned by 
two i-vectors [4]. Mathematically, it is computed by cosine similarity between the i-vectors of 
the given speakers as follows: 

 
 

(2) 
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where w1 and w2 are the i-vectors of two speakers, d is their shared dimension, and w1,k and w2,k 
are the kth component of the vectors w1 and w2, respectively. The cosine similarity becomes 1.0 
when the direction of the two vectors match perfectly, and 0.0 for perpendicular vectors. This 
measure is useful when the scale does not affect the similarity. 

3.2 Speaker Clustering Using Group Average  

Once a similarity metric is defined, a set of speakers can be grouped into a number of subsets 
using agglomerative hierarchical clustering [21, 22], which reduces the number of clusters by 
merging the closest pair of speakers one by one until a desired number of clusters is achieved. 
When two clusters are merged into a new cluster, the i-vector of the new one is approximated 
by the average of the i-vectors before the merge. The proposed clustering algorithm using 
group averaging is as follows:  

 
Algorithm 1: i-vector-based speaker clustering using group average method 
– Input: 

1) i-vector extractor 
2) N: total number of speakers 
3) C: desired number of clusters, C ≤ N 

– Output: C clusters of speakers 
I. Extract i-vectors of all speakers from the UBM of speaker-specific training data. 

II. Construct initial clusters of single speakers as many as the total number of speakers, and 
set the current number of clusters, c, as the total number of speakers: 

 
III. Compute cosine similarities between all possible pairs of clusters by Equation (2): 

 

 (3) 

IV. Choose a pair with the highest cosine similarity: 

 
V. Merge the two clusters into one, assign a new i-vector for the new cluster by the average 

of the merged clusters, and decrease the current number of clusters by 1, 

 

VI. Repeat steps III, IV, and V until the current number of clusters is less than or equal to the 
desired number of clusters: c ≤ C. 

First, extract i-vectors of all the speakers using the i-vector extractor trained by the UBM of 
speaker-specific training data. Second, construct initial set of clusters from the individual 
speakers, with the number of clusters equaling the number of speakers. Third, compute cosine 
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similarities of all cluster pairs using Equation (2). The matrix S in step II is of size c × c, but 
only upper half above the diagonal elements are needed because Sij = Sji (symmetric) and the 
diagonal elements Sii = 1 for 1 ≤ i, j ≤ c. For the same reason, only i < j pair indices are 
considered in the subsequent steps. Fourth, choose a pair with the highest cosine similarity. 
Fifth, merge the two selected clusters, and assign the new cluster i-vector by their average. 
Finally, repeat the aforementioned steps until the desired number of clusters is achieved. 

3.3 Speaker Clustering using Ward Linkage Method 
The problem of the simple group-averaging scheme for clustering is that the numbers of 
speakers in the different clusters may become too different if some of the speakers are close in 
the i-vector space. To obtain balanced numbers of speakers, an agglomerative hierarchical 
clustering using Ward linkage method [20, 21] is applied. The clustering is redesigned using 
Ward linkage scheme as follows: 

 
Algorithm 2: i-vector-based speaker clustering using Ward linkage method 
– Input: i-vector extractor; N: total number of speakers; C: desired number of clusters, C ≤ N 
– Output: C clusters of speakers 
I. Extract i-vectors of all speakers from the UBM of speaker-specific training data. 

II. Construct initial clusters of single speakers as many as the total number of speakers, and 
set the current number of clusters, c, as that of the total speakers. 

 
III. Compute cosine similarity of every pair of clusters using Equation (2), 

 
IV. Compute merging factor α of every pair of clusters using Ward linkage method: 

 
 

(4) 
where ni and nj are the numberrs of speakers in clusters i and j, respectively. 

V. Choose a pair with the highest cosine similarity weighted by the merging factor: 

 
VI. Merge the two clusters into one, assign its i-vector by the weighted average of the merged 

clusters, and decrease the current number of clusters by 1: 

 
VII. Repeat steps III–VI until the current number of clusters is less than or equal to the 

desired number of clusters: c ≤ C. 

The inputs and outputs, and all procedures except steps IV–VI are the same as Algorithm 1. As 
shown in step IV, merging factor of every pair is computed by Ward linkage criteria [21]. In 
order to choose a pair to merge, we select a pair with the highest cosine similarity weighted by 
the merging factor as shown in step V. The merging factor αij in Equation (4) is maximized 
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when ni = nj for constant ni + nj, so weighting by αij guides Algorithm 2 to choose a pair of 
clusters with similar number of speakers, also resulting in similar numbers of speakers in the 
final set of clusters [20, 21]. 

3.4 Speech Recognition Model Retraining and Cluster Selection 
Once the clustering is completed, cluster dependent acoustic models can be generated by 
adapting the speaker-independent (SI) model with the data that belong to the individual 
clusters. As shown in Fig. 2, i-vectors are extracted from training data, and used in grouping 
similar speakers into clusters. According to the speaker clustering results, total training dataset 
are split into non-overlapping subsets, and they are used in obtaining cluster-dependent (CD) 
models. However, because the amount of training data for each cluster reduces to 1/N on 
average, acoustic unit training is less reliable due to the reduced amount of training data. 
Therefore, we train an SI acoustic model by using the data from all speakers, and retrain the SI 
model with the training data of the cluster-specific speakers to obtain the individual CD 
models. The proposed algorithm for efficient generation of CD models as follows:  
 
Algorithm 3: Cluster-dependent model adaptation 
– Input: training data; i-vector extractor; C clusters of speakers. 
– Output: C cluster models. 
I. Obtain a speaker-idenpendent HMM-DNN model using training data of all speakers 

(denoted simply as “SI”). 
II. Use Algorithms in Sections 3.2 and 3.3 to obtain C speaker clusters. 
III. Split the whole training data into cluster-specific data by the speakers of the individual 

clusters. 
IV. For c from 1 to C, 

A. Retrain SI using training data of cluster c  
B. To avoid overfitting, start learning rate from half of the value used in training SI 
C. Store the individual models 
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Fig. 2. Cluster selection and retraining from speaker independent model. 
 

To recognize unknown input speech, the best model is chosen among the clustered models. 
Fig. 3 illustrates the recognition procedure. Using the i-vector extractor obtained by SI UBM, 
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the i-vector of unknown speech is extracted. The cosine similarities between the i-vectors of 
the input and cluster center are computed, and the best cluster is chosen whose pairwise 
similarity is the highest. Speech recognition result is generated by using the chosen CD model. 
Using the following Algorithm 4, best-matched model is chosen according to the cluster 
membership so that improved performance should be expected over using the SI model. 
 
Algorithm 4: Cluster-dependent model selection for unknown inputs 
– Input: speech signal; i-vector extractor; i-vectors of C clusters; C cluster models 
– Output: Speech recognition result (text) 
I. Extract features for i-vector from input speech signal. 
II. Extract i-vector using pretrained i-vector extractor from the input features. 
III. Calculate cosine similarities between the cluster representative i-vectors (average of 

i-vectors of clustered speakers) and input i-vector. 
IV. Select cluster-dependent model with the highest similarity value. 
V. Perform speech recognition with the selected model.  
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Fig. 3. Speech recognition using clustered models. 

4. Performance Evaluation 
To show the effectiveness of the proposed method, we have conducted speech recognition 
experiments on the Resource Management (RM) database [10]. The language is English. Its 
training set contains 109 speakers and 3,990 sentences, and the test set includes 59 speakers 
and 1,460 sentences that are entirely different from the training set. The speakers in the test set 
are not present in the training set as well. Speech recognition and i-vector extraction modules 
are constructed according the recipes in Kaldi speech recognition toolkit [19]. The simulation 
platfom is composed of NVIDIA GTX Titan X (1.076 GHz) GPU with GDDR5 12GB 
memory, on a desktop computer with Intel i3-6100 (3.7 GHz) CPU and DDR4 64GB main 
memory. The operating system and GPU driver versions are Ubuntu Linux 18.04 and CUDA 
version 10.1. The Kaldi toolkit for speech recognition is compiled from the distributed source 
code to avoid any mismatch between OS and the toolkits. 

4.1 Speech Feature and i-Vector Extraction 

The input features for i-vector extraction is 60-dimensional multi-taper MFCC [15] from the 
time-domain speech signal. Using the i-vector extraction module described in Section 2, 
100-dimensional i-vectors are extracted. This model configuration fits the 2010 NIST Speaker 
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Recognition Evaluation (SRE10) speech database [15]. We modified this model to be suited to 
RM datasets. The GMM-UBM used to train the i-vector extractor was itself trained on RM 
datasets as well [26]. 

4.2 Speech Recognition Models 

Baseline HMM-DNN speech recognition models are constructed using two different types of 
DNNs. The first model uses a fully connected neural network (FCN). The input features are 
40-dimensional, log mel-filterbank energies at every 10 ms shift length. To model context 
information in time, delta and acceleration vectors are extracted over 5 frames before and after 
the current frame. The dimension of the resultant vector is therefore 40×3×(5+1+5) = 1,320. In 
the HMM-DNN model shown in Fig. 4, the extracted input feature vector is passed through 
five hidden layers, each of which contains 1024 output units, and softmax layer on the top 
predicts the HMM state label of the input frame. To obtain a reliable initial FCN weights, the 
hidden layers are pre-trained in an unsupervised manner using restricted Boltzmann machine 
(RBM) training algorithm without state labels [27]. With the decoded HMM state labels, FCN 
weights are fine-tuned with per-frame cross-entropy loss and ReLU (rectified linear unit) 
activation functions at the output units [15, 29]. 

 

HMM
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Softmax
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1024 units

1024 units
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Fig. 4. HMM-DNN speech recognition models using fully-connected network (FCN). The input is a 

supervector of 11 frames of 40 log mel-filterbank energies, and it is passed through 5 hidden layers and 
1 softmax layer to predict HMM state labels. 
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The second one uses bidirectional long short-term memory (BLSTM). The input feature vector 
is 40 log mel-filterbank energies at every 10 ms, with their delta and acceleration vectors only 
because the temporal trajectories of the features are modeled by forward and backward 
recurrent paths as shown in Fig. 5. The total input vector dimension is therefore 120 (40×3), 
which is much smaller than that of the FCN. The forward and backward layers are given 320 
hidden units, and they are projected to 200 state output units [15, 29]. Initial learning rate for 
retraining cluster-dependent model is set to be half of the learning rate of the SI model. 
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Fig. 5. HMM-DNN speech recognition models using BLSTM. The input is 40 log mel-filterbank 

energies. Forward and backward layers of 320 hidden nodes models the temporal behavior of the input 
features, and a fully-connected, single layer is built upon those hidden node outputs to generate 200 

state outputs, which is then used to predict HMM state labels. 

 

4.3 Preliminary Analysis of the Clusters  
To verify that the proposed clustering methods in Sections 3.2 and 3.3 can split the given set of 
speakers into appropriate subsets, we analyzed the results of clustering by the number of 
speakers in the subsets. Table 1 shows the number of selected speakers for five cluster models 
using group average in Algorithm 1 and Ward linkage in Algorithm 2. The total number of 
speakers is 109, so the mean number of speakers per cluster is 21.8 in both cases. The 
computed standard deviations are 6.5 and 5.4 for group average and Ward linkage methods, 
respectively, so Ward linkage method generated speaker subsets of more balanced sizes. 
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We further analyzed the effect of clustering on the performance of speech recognition in 
terms of word error rates (WERs). Table 2 shows the performance variations according to 
matched (same cluster numbers) and unmatched (different cluster numbers) conditions. 
Columns represent test set division by the output of the i-vector clustering. Rows are the 
cluster models used in recognition. The used methods are group average clustering and FCN 
speech recognition model. “SI (baseline)” is the universal, speaker-independent model trained 
by the data of all speakers. The row names “Cluster 1”, “Cluster 2”, …, “Cluster 5” are models 
trained by cluster 1-5 subsets, respectively. In each column, if the column number is the same 
as the row number, the speaker is optimally classified into the cluster with the least i-vector 
distance. The diagonal ones are represented by boldface fonts, and the lowest WERs are 
indicated by asterisks. For the test inputs which selected cluster models 1 and 3, the chosen 
models were optimal in WER values. For the test inputs of cluster 2, although their selected 
models were not the best but showed at least the second best WER. When SI results were 
compared to the cluster-matched results, the models for clusters 1, 2, and 3 outperformed the 
SI model by 0.05%–0.30% WER. For clusters 4 and 5, the i-vector-matched models were not 
the best ones for the inputs, and even failed to improve the baseline SI model. However, this 
had little effect on the overall performance improvements. The overall performance improved 
by 0.13% on average, which means the performance relatively improved by 6.8%. 

Table 1. Number of speakers assigned to each cluster, when the desired number of clusters is set to 5. 
Column names “C1”-“C5” indicate the clusters of the speakers. 

 Number of speakers of the clusters  mean Standard 
deviation C1 C2 C3 C4 C5 

Group average 30 13 24 18 30 21.8 6.5 
Ward linkage 19 29 17 18 26 21.8 5.4 

Table 2. WER variabilities by test data matched and unmatched to cluster models using FCN. The 
second row is the WER by the SI model (single cluster), and rows named “Cluster 1”-“Cluster 5” are the 
WERs by cluster 1-5 models. The matched condition by i-vector clustering is represented by boldface 

fonts, and the best WER in a column is marked by asterisks (*). 

FCN model Selected cluster numbers of test inputs 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

SI (baseline) 2.47 1.51 1.10 2.02 1.75 
Cluster 1 2.17* 2.17 1.13 2.12 2.18 
Cluster 2 2.67 1.46 1.00 2.01 1.75 
Cluster 3 2.63 1.24* 0.91* 1.85* 1.75 
Cluster 4 2.55 1.67 1.18 2.17 1.57* 
Cluster 5 2.67 1.64 0.96 2.33 1.83 

Table 3. WER variabilities by test data matched and unmatched to cluster models using BLSTM.. 

FCN model Selected cluster numbers of test inputs 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

SI (baseline) 2.09 1.73 1.27 1.75 1.66 
Cluster 1 1.91* 1.68 1.22 1.91 1.75 
Cluster 2 2.19 1.64 1.22 1.64* 1.75 
Cluster 3 2.21 1.59* 1.18* 1.75 1.75 
Cluster 4 2.03 1.59* 1.27 1.75 1.48* 
Cluster 5 2.29 1.68 1.22 2.01 1.57 
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In the case of speech recognition models using BLSTM, we also analyzed the results of five 
cluster models. Table 3 shows the performance variations according to the matched and the 
unmatched conditions. Similarly to the FCN results in Table 2, for the test inputs which 
selected cluster models 1 and 3, the chosen models were the optimal in WER values. For the 
test inputs of cluster 2, 4, and 5, the selected models were the second best in WER numbers. 
When SI results were compared with cluster-matched results, all cluster models outperformed 
the SI model by 0.09%–0.18%, except for cluster 4 which produced the same result as that of 
the SI model. Therefore, the overall performance improved by 0.13% on average, which 
means that the performance improved relatively by 7.2%. 

4.4 Speech Recognition Performance Evaluation 
Speech recognition experiments on RM datasets were carried out to assess the performance 
variations according to the changes in clustering methods, number of clusters, and speech 
recognition models. To assess the variations in performance according to the number of 
clusters, we tried 5, 7, 10, 20, and 40 clusters with 2 different types of clustering methods: 
group average and Ward linkage methods, respectively. Table 4 shows comparison results of 
the baseline SI and cluster-dependent speech recognition models with FCN. The performances 
were compared based on WERs, and the relative WER improvements over the baseline system. 
Both methods with various numbers of clusters outperformed the baseline WER by 
0.04–0.24%, and their relatively improvements were 2.1–12.2%. Among the various cluster 
numbers, 20 clusters model was the best for group average method, and 40 clusters were the 
best for Ward linkage clustering method. Generally larger the number of clusters was, better 
the speech recognition performance was. This is because, as the number of models is increased, 
it becomes more likely that better matched models for the input utterances can be used for 
various speakers, so improved performance can be expected. The downsides are the lack of 
adaptation data for the cluster models, the computational overhead in finding the best model 
(shown in Fig. 3.), and storage overhead in maintaining large number of models. 

Table 4. Performance comparison of the SI baseline model and the proposed models using FCN in 
terms of WERs and their relative improvements (rel. imp.) over the baseline. All the numbers are in 

percentages. The relative improvement is not available for the baseline result. 

FCN model Group average Ward linkage 
WER (rel. imp.) 

SI (baseline) 1.91 (-) 
5 clusters 1.78 (6.8%) 1.87 (2.1%) 
7 clusters 1.76 (7.9%) 1.84 (3.7%) 

10 clusters 1.81 (5.2%) 1.82 (4.7%) 
20 clusters 1.67 (12.2%) 1.73 (9.3%) 
40 clusters 1.77 (7.2%) 1.69 (11.4%) 
Average 1.75 (8.0%) 1.79 (6.3%)  

   We also tried various numbers of clusters with the proposed methods for BLSTM as well. 
Table 5 shows the comparison of the baseline speaker-independent and cluster-dependent 
BLSTM speech recognition models. Both of the proposed clustering methods with all the 
numbers of clusters outperformed the baseline WER by 0.1–0.19%, the relative WER 
improvements for which were 5.6%–10.5%. When compared to FCN, the baseline WER was 
0.11% lower, and 0.03%–0.18% lower WERs with cluster models. Because BLSTM can 
model the temporal variation of the input features more precisely, the performances were 
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better and reliable with the change in the number of clusters. Comparing clustering methods, 
Ward linkage exhibited consistent improvement over group average method, by showing 
continuous improvements with the increase of the number of clusters. 

Table 5. Performance comparison of the SI baseline and proposed models using BLSTM in terms of 
WERs and relative improvements in WER. Similar to FCN, the WERs were kept being improved as the 

number of clusters increased in most cases. 

FCN model Group average Ward linkage 
WER (rel. imp.) 

SI (baseline) 1.80 (-) 
5 clusters 1.67 (7.2%) 1.70 (5.6%) 
7 clusters 1.69 (6.1%) 1.66 (7.8%) 

10 clusters 1.69 (6.1%) 1.64 (8.9%) 
20 clusters 1.70 (5.6%) 1.64 (8.9%) 
40 clusters 1.66 (7.8%) 1.61 (10.5%) 
Average 1.68 (6.6%) 1.65 (8.3%)  

5. Conclusion 
In this study, the performance of a large-scale speech recognition system was improved by 
clustering training data into similar speakers. Novel speaker clustering methods were 
proposed using the i-vector similarity metric and bottom-up hierarchical clustering, and 
retrained cluster-dependent models were used to improve overall speech recognition 
performance. Experimental results on the RM database showed that, Ward linkage clustering 
generated speaker subsets of balanced sizes, and showed more consistent word error rate 
improvements with the increase of the number of clusters. The set of deep neural network 
models (FCN and BLSTM) using the proposed clustering methods produced 12.2% and 
10.5% relative performance improvements in terms of word error rates, respectively, over the 
baseline speaker independent model. 
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