• Title/Summary/Keyword: hybrid systems

Search Result 2,646, Processing Time 0.029 seconds

Orthogonal variable spreading factor encoded unmanned aerial vehicle-assisted nonorthogonal multiple access system with hybrid physical layer security

  • Omor Faruk;Joarder Jafor Sadiqu;Kanapathippillai Cumanan;Shaikh Enayet Ullah
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.213-225
    • /
    • 2023
  • Physical layer security (PLS) can improve the security of both terrestrial and nonterrestrial wireless communication networks. This study proposes a simplified framework for nonterrestrial cyclic prefixed orthogonal variable spreading factor (OVSF)-encoded multiple-input and multiple-output nonorthogonal multiple access (NOMA) systems to ensure complete network security. Various useful methods are implemented, where both improved sine map and multiple parameter-weighted-type fractional Fourier transform encryption schemes are combined to investigate the effects of hybrid PLS. In addition, OVSF coding with power domain NOMA for multi-user interference reduction and peak-toaverage power ratio (PAPR) reduction is introduced. The performance of $\frac{1}{2}$-rated convolutional, turbo, and repeat and accumulate channel coding with regularized zero-forcing signal detection for forward error correction and improved bit error rate (BER) are also investigated. Simulation results ratify the pertinence of the proposed system in terms of PLS and BER performance improvement with reasonable PAPR.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Dynamical Polynomial Regression Prefetcher for DRAM-PCM Hybrid Main Memory (DRAM-PCM 하이브리드 메인 메모리에 대한 동적 다항식 회귀 프리페처)

  • Zhang, Mengzhao;Kim, Jung-Geun;Kim, Shin-Dug
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.20-23
    • /
    • 2020
  • This research is to design an effective prefetching method required for DRAM-PCM hybrid main memory systems especially used for big data applications and massive-scale computing environment. Conventional prefetchers perform well with regular memory access patterns. However, workloads such as graph processing show extremely irregular memory access characteristics and thus could not be prefetched accurately. Therefore, this research proposes an efficient dynamical prefetching algorithm based on the regression method. We have designed an intelligent prefetch engine that can identify the characteristics of the memory access sequences. It can perform regular, linear regression or polynomial regression predictive analysis based on the memory access sequences' characteristics, and dynamically determine the number of pages required for prefetching. Besides, we also present a DRAM-PCM hybrid memory structure, which can reduce the energy cost and solve the conventional DRAM memory system's thermal problem. Experiment result shows that the performance has increased by 40%, compared with the conventional DRAM memory structure.

Accuracy assessment of real-time hybrid testing for seismic control of an offshore wind turbine supporting structure with a TMD

  • Ging-Long Lin;Lyan-Ywan Lu;Kai-Ting Lei;Shih-Wei Yeh;Kuang-Yen Liu
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.601-619
    • /
    • 2023
  • In this study, the accuracy of a real-time hybrid test (RTHT) employed for a performance test of a tuned mass damper (TMD) on an offshore wind turbine (OWT) with a complicated jacket-type supporting structure is quantified and evaluated by comparing the RTHT results with the experimental data obtained from a shaking table test (STT), in which a 1/25-scale model for a typical 5-MW OWT controlled by a TMD was tested. In the RTHT, the jacket-type OWT structure was modelled using both multiple-DOF (MDOF) and single-DOF (SDOF) numerical models. When compared with the STT test data, the test results of the RTHT show that while the SDOF model, which requires less control computational time, is able to well predict the peak responses of the nacelle and TMD only, the MDOF model is able to effectively predict both the peak and over-all time-history responses at multiple critical locations of an OWT structure. This also indicates that, depending on the type of structural responses considered, an RTHT with either an SDOF or a MDOF model may be a promising alternative to the STT to assess the effectiveness of a TMD for seismic mitigation in an OWT context.

Neutronic and thermohydraulic blanket analysis for hybrid fusion-fission reactor during operation

  • Sergey V. Bedenko ;Igor O. Lutsik;Vadim V. Prikhodko ;Anton A. Matyushin ;Sergey D. Polozkov ;Vladimir M. Shmakov ;Dmitry G. Modestov ;Hector Rene Vega-Carrillo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2678-2686
    • /
    • 2023
  • This work demonstrates the results of full-scale numerical experiments of a hybrid thorium-containing fuel plant operating in a state close to critical due to a controlled source of D-T neutrons. The proposed facility represented a level of generated power (~10-100 MWt) in a small pilot. In this work, the simulation of the D-T neutron plasma source operation in conjunction with the facility blanket was performed. The fission of fuel nuclei and the formation of spatial-energy release were studied in this simulation, in pulsed and stationary modes of the facility operation. The optimization results of neutronic and fluid dynamics studies to level the emerging offsets of the radial energy formed in the volume of the facility multiplying part due to the pulsed operation of the D-T neutron plasma source were presented. The results will be useful in improving the power control-based subcriticality monitoring method in coupled systems of the "pulsed neutron source-subcritical fuel assembly" type.

Modeling and Analysis of the Speed Profiles for the Gasoline Hybrid Vehicle in the Real Driving Emission Test (가솔린 하이브리드 차량의 실도로 배기규제 평가를 위한 구간 주행 속도 특성 분석 및 해석 모델 개발 연구)

  • Seongsu Kim;Minho Lee;Kyoungha Noh;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.184-190
    • /
    • 2023
  • The European Union has instituted a new emission standard protocol that necessitates real-time measurements from vehicles on actual roads. The adequate development of routes for real driving emissions (RDE) mandates substantial resources, encompassing both vehicles and a portable emission measurement system (PEMS). In this study, a simulation tool was utilized to predict the vehicle speed traversing the routes developed for the RDE measurements. Initially, the vehicle powertrain system was modeled for both a gasoline hybrid vehicle and a gasoline engine-only vehicle. Subsequently, the speed profile for the specified vehicle was constructed based on the RDE route developed for the EURO-6 standard. Finally, the predicted vehicle speed profiles for highway and urban routes were assessed utilizing the actual driving data. The driving model predicted more consistency in the vehicle speed at each driving section. Meanwhile, the human driver tended to accelerate further, and then decelerate in each section, instead of cruising at a predicted section speed.

Direct displacement-based seismic design methodology for the hybrid system of BRBFE and self-centering frame

  • Akbar Nikzad;Alireza Kiani;Seyed Alireza Kazerounian
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.463-480
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBF-Es) exhibit stable cyclic behavior and possess a high energy absorption capacity. Additionally, they offer architectural advantages for incorporating openings, much like Eccentrically Braced Frames (EBFs). However, studies have indicated that significant residual drifts occur in this system when subjected to earthquakes at the Maximum Considered Earthquake (MCE) hazard level. Consequently, in order to mitigate these residual drifts, it is recommended to employ self-centering systems alongside the BRBF-E system. In our current research, we propose the utilization of the Direct Displacement-Based Seismic Design method to determine the design base shear for a hybrid system that combines BRBF with an eccentric configuration and a self-centering frame. Furthermore, we present a methodology for designing the individual components of this composite system. To assess the effectiveness of this design approach, we designed 3-, 6-, and 9-story buildings equipped with the BRBF-E-SCF system and developed finite element models. These models were subjected to two sets of ground motions representing the Maximum Considered Earthquake (MCE) and Design Basis Earthquake (DBE) seismic hazard levels. The results of our study reveal that although the combined system requires a higher amount of steel material compared to the BRBF-E system, it substantially reduces residual drift. Furthermore, the combined system demonstrates satisfactory performance in terms of story drift and ductility demand.

Efficient and Secure Sound-Based Hybrid Authentication Factor with High Usability

  • Mohinder Singh B;Jaisankar N.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2844-2861
    • /
    • 2023
  • Internet is the most prevailing word being used nowadays. Over the years, people are becoming more dependent on the internet as it makes their job easier. This became a part of everyone's life as a means of communication in almost every area like financial transactions, education, and personal-health operations. A lot of data is being converted to digital and made online. Many researchers have proposed different authentication factors - biometric and/or non-biometric authentication factors - as the first line of defense to secure online data. Among all those factors, passwords and passphrases are being used by many users around the world. However, the usability of these factors is low. Also, the passwords are easily susceptible to brute force and dictionary attacks. This paper proposes the generation of a novel passcode from the hybrid authentication factor - sound. The proposed passcode is evaluated for its strength to resist brute-force and dictionary attacks using the Shannon entropy and Passcode (or password) entropy formulae. Also, the passcode is evaluated for its usability. The entropy value of the proposed is 658.2. This is higher than that of other authentication factors. Like, for a 6-digit pin - the entropy value was 13.2, 101.4 for Password with Passphrase combined with Keystroke dynamics and 193 for fingerprint, and 30 for voice biometrics. The proposed novel passcode is far much better than other authentication factors when compared with their corresponding strength and usability values.

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

Android Botnet Detection Using Hybrid Analysis

  • Mamoona Arhsad;Ahmad Karim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.704-719
    • /
    • 2024
  • Botnet pandemics are becoming more prevalent with the growing use of mobile phone technologies. Mobile phone technologies provide a wide range of applications, including entertainment, commerce, education, and finance. In addition, botnet refers to the collection of compromised devices managed by a botmaster and engaging with each other via a command server to initiate an attack including phishing email, ad-click fraud, blockchain, and much more. As the number of botnet attacks rises, detecting harmful activities is becoming more challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to find the security vulnerabilities that occur through coordinated command servers causing major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that integrates permissions and API and experiments on the machine-learning classifiers to detect mobile botnet applications. In this paper, the experiment employed benign, botnet, and malware applications for validation of the performance and accuracy of classifiers. The results conclude that a classifier model based on a simple decision tree obtained 99% accuracy with a low 0.003 false-positive rate than other machine learning classifiers for botnet applications detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile botnet detection as compared to static and dynamic features when both are taken separately.