DOI QR코드

DOI QR Code

Direct displacement-based seismic design methodology for the hybrid system of BRBFE and self-centering frame

  • Akbar Nikzad (Department of Civil Engineering, Bushehr Branch, Islamic Azad University) ;
  • Alireza Kiani (Department of Civil Engineering, Bushehr Branch, Islamic Azad University) ;
  • Seyed Alireza Kazerounian (Department of Civil Engineering, Bushehr Branch, Islamic Azad University)
  • Received : 2023.08.16
  • Accepted : 2023.10.20
  • Published : 2023.12.10

Abstract

The buckling-restrained braced frames with eccentric configurations (BRBF-Es) exhibit stable cyclic behavior and possess a high energy absorption capacity. Additionally, they offer architectural advantages for incorporating openings, much like Eccentrically Braced Frames (EBFs). However, studies have indicated that significant residual drifts occur in this system when subjected to earthquakes at the Maximum Considered Earthquake (MCE) hazard level. Consequently, in order to mitigate these residual drifts, it is recommended to employ self-centering systems alongside the BRBF-E system. In our current research, we propose the utilization of the Direct Displacement-Based Seismic Design method to determine the design base shear for a hybrid system that combines BRBF with an eccentric configuration and a self-centering frame. Furthermore, we present a methodology for designing the individual components of this composite system. To assess the effectiveness of this design approach, we designed 3-, 6-, and 9-story buildings equipped with the BRBF-E-SCF system and developed finite element models. These models were subjected to two sets of ground motions representing the Maximum Considered Earthquake (MCE) and Design Basis Earthquake (DBE) seismic hazard levels. The results of our study reveal that although the combined system requires a higher amount of steel material compared to the BRBF-E system, it substantially reduces residual drift. Furthermore, the combined system demonstrates satisfactory performance in terms of story drift and ductility demand.

Keywords

References

  1. A.T.C. (2006), Next-Generation Performance-Based Seismic Design Guidelines: Program Plan for New and Existing Buildings (FEMA-445), Applied Technology Council Redwood City, CA.
  2. ABAQUS-6.14 (2014), Standard User's Manual, Hibbitt, Karlsson and Sorensen, Inc.
  3. Abdollahzadeh, G. and Banihashemia, M. (2013), "Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)", Steel Compos. Struct., 14(6), 621-636. https://doi.org/10.12989/scs.2013.14.6.621.
  4. Ali, M.M., Osman, S.A., Husam, O.A. and Al-Zand, A.W. (2018), "Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings", Steel Compos. Struct., 26(3), 361-373. https://doi.org/10.12989/scs.2018.26.3.361.
  5. ASCE (2017), Minimum Design Loads and Associated Criteria for Buildings and other Structures, (ASCE/SEI7-16), Am. Soc. Civ. Eng., American Society of Civil Engineers.
  6. ASCE7-10 (2010), Minimum Design Loads for Buildings and Other Structures, Standards, American Society of Civil Engineers, Reston, VA.
  7. Banuelos-Garcia, F.H., Ayala, G., Lopez, S., Banuelos-Garcia, F.H., Ayala, G. and Lopez, S. (2020), "Earthquakes and Structures", Earthq. Struct., 18(5), 609. https://doi.org/10.12989/eas.2020.18.5.609.
  8. Beiraghi, H. (2019), "Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls", Struct. Eng. Mech., 72(4), 443-454. https://doi.org/10.12989/sem.2019.72.4.443.
  9. Campione, G. and Scibilia, N. (2002), "Beam-column behavior of concrete filled steel tubes", Steel Compos. Struct., 2(4), 259-276. https://doi.org/10.12989/scs.2002.2.4.259.
  10. Chao, S.H. and Goel, S.C. (2008), "Performance-based plastic design of special truss moment frames", Eng. J., 45(2), 127.
  11. Chao, S.H., Goel, S.C. and Lee, S.S. (2007), "A seismic design lateral force distribution based on inelastic state of structures", Earthq. Spectra, 23(3), 547-569. https://doi.org/10.1193/1.2753549.
  12. Choi, H. and Kim, J. (2009), "Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames", Struct. Eng. Mech., 31(1), 93-112. https://doi.org/10.12989/sem.2009.31.1.093.
  13. Clayton, P.M., Winkley, T.B., Berman, J.W. and Lowes, L.N. (2012), "Experimental investigation of self-centering steel plate shear walls", J. Struct. Eng., 138(7), 952-960. https://doi.org/10.1061/(asce)st.1943-541x.0000531.
  14. Fahnestock, L.A., Ricles, J.M. and Sause, R. (2007), "Experimental evaluation of a large-scale buckling-restrained braced frame", J. Struct. Eng., 133(9), 1205-1214. https://doi.org/10.1061/(asce)0733-9445(2007)133:9(1205).
  15. FEMA P695 (2009), "Quantification of building seismic performance factors", Technical Report P695, Applied Technology Council for the Federal Emergency Management Agency, Washington, D.C.
  16. Firouzianhaij, A., Gorji Azandariani, M., Usefi, N. and Samali, B. (2022), "Performance of baseplate connections in CFS storage rack systems: An experimental, numerical and theoretical study", J. Constr. Steel Res., 196, 107421. https://doi.org/10.1016/j.jcsr.2022.107421.
  17. Garlock, M.M., Ricles, J.M. and Sause, R. (2005), "Experimental studies of full-scale posttensioned steel connections", J. Struct. Eng., 131(3), 438-448. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(438).
  18. Ghamari, A., Haeri, H., Khaloo, A. and Zhu, Z. (2019), "Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper", Steel Compos. Struct., 30(4), 383-392. https://doi.org/10.12989/scs.2019.30.4.383.
  19. Ghanbari-Ghazijahani, T., Azandariani, M.G., Vimonsatit, V. and Sulong, N.H.R. (2023), "Experiments and design of concretefilled steel tubes with timber chips under axial compression", Thin Wall. Struct., 186, 110679. https://doi.org/10.1016/j.tws.2023.110679.
  20. Ghanbari-Ghazijahani, T., Nabati, A., Gorji Azandariani, M. and Fanaie, N. (2020), "Crushing of steel tubes with different infills under partial axial loading", Thin Wall. Struct., 149, 106614. https://doi.org/10.1016/j.tws.2020.106614.
  21. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  22. Gholhaki, M., Eshrafi, B., Gorji Azandariani, M. and Rezaeifar, O. (2021), "Seismic assessment of linked-column frame structural system considering soil-structure effects", Struct., 33, 2264-2272. https://doi.org/10.1016/j.istruc.2021.06.005.
  23. Gholipour Feizi, M., Mojtahedi, A. and Nourani, V. (2015), "Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames", Steel Compos. Struct., 19(2), 467-484. https://doi.org/10.12989/scs.2015.19.2.467.
  24. Gorji Azandariani, A., Gholhaki, M. and Gorji Azandariani, M. (2022a), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157.
  25. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  26. Gorji Azandariani, M., Ghanbari-Ghazijahani, T., Mohebkhah, A. and Classen, M. (2021a), "Concrete- and timber-filled tubes under axial compression-Numerical and theoretical study", J. Build. Eng., 44, 103231. https://doi.org/10.1016/j.jobe.2021.103231.
  27. Gorji Azandariani, M. and Gholami, M. (2022), "Seismic fragility investigation of hybrid structures BRBF with eccentricconfiguration and self-centering frame", J. Constr. Steel Res., 107300. https://doi.org/10.1016/j.jcsr.2022.107300.
  28. Gorji Azandariani, M., Gholami, M. and Zare, E. (2022b), "Development of spectral element method for free vibration of axially-loaded functionally-graded beams using the first-order shear deformation theory", Eur. J. Mech.-A/Solid., 96, 104759. https://doi.org/10.1016/j.euromechsol.2022.104759.
  29. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yieldstrength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866.
  30. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021b), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Struct., 29, 30-47. https://doi.org/10.1016/j.istruc.2020.11.009.
  31. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Gorji Azandariani, A. (2022c), "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build. Eng., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963.
  32. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021c), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33, 101821. https://doi.org/10.1016/j.jobe.2020.101821.
  33. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021d), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  34. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020c), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  35. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021e), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  36. Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021f), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  37. Gorji Azandariani, M., Vajdian, M., Asghari, K. and Mehrabi, S. (2023), "Mechanical properties of polyolefin and polypropylene fibers-reinforced concrete-An experimental study", Compos. Part C Open Access, 12, 100410. https://doi.org/10.1016/J.JCOMC.2023.100410.
  38. Haider, S.M.B. and Lee, D. (2021), "A review on BRB and SCBRB members in building structures", Struct. Eng. Mech., 80(5), 609. https://doi.org/10.12989/sem.2021.80.5.609.
  39. Housner, G.W. (1956), "Limit design of structures to resist earthquakes", Proc. 1st WCEE, 1-5.
  40. IS2800 (2014), Tehran, Iran.
  41. Izzuddin, B.A. (1990), "Nonlinear dynamic analysis of framed structures", Ph.D Thesis, Imperial College London, University of London.
  42. Izzuddin, B.A. (2001), "Conceptual issues in geometrically nonlinear analysis of 3D framed structures", Comput. Meth. Appl. Mech. Eng., 191(8-10), 1029-1053. https://doi.org/10.1016/S0045-7825(01)00317-6.
  43. Izzuddin, B.A., Karayannis, C.G. and Elnashai, A.S. (1994), "Advanced nonlinear formulation for reinforced concrete beamcolumns", J. Struct. Eng., 120(10), 2913-2934. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2913).
  44. Jia, M., Lu, D., Guo, L. and Sun, L. (2014), "Experimental research and cyclic behavior of buckling-restrained braced composite frame", J. Constr. Steel Res., 95, 90-105. https://doi.org/10.1016/j.jcsr.2013.11.021.
  45. Jiang, Q., Wang, H., Feng, Y., Chong, X., Huang, J. and Zhou, Y. (2023), "Direct displacement-based seismic design for a retrofitted RC frame by hinged wall with BRBs at base", Struct., 57, 105182. https://doi.org/10.1016/j.istruc.2023.105182.
  46. Kalali, H., Hajsadeghi, M., Zirakian, T. and Alaee, F.J. (2015), "Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates", Steel Compos. Struct., 19(2), 277-292. https://doi.org/10.12989/scs.2015.19.2.277.
  47. Kalapodis, N.A., Muho, E.V. and Beskos, D.E. (2022), "Seismic design of plane steel MRFS, EBFS and BRBFS by improved direct displacement-based design method", Soil Dyn. Earthq. Eng., 153, 107111. https://doi.org/10.1016/j.soildyn.2021.107111.
  48. McCormick, J., Aburano, H., Ikenaga, M. and Nakashima, M. (2008), "Permissible residual deformation levels for building structures considering both safety and human elements", Proc. 14th world Conf. Earthq. Eng., WCEE, 12-17.
  49. Mirtaheri, M., Sehat, S. and Nazeryan, M. (2018), "Improving the behavior of buckling restrained braces through obtaining optimum steel core length", Struct. Eng. Mech., 65(4), 401-408. https://doi.org/10.12989/sem.2018.65.4.401.
  50. Mohebkhah, A. and Azandariani, M.G. (2015), "Lateral-torsional buckling of Delta hollow flange beams under moment gradient", Thin Wall. Struct., 86, 167-173. https://doi.org/10.1016/j.tws.2014.10.011.
  51. Mohebkhah, A. and Azandariani, M.G. (2016), "Lateral-torsional buckling resistance of unstiffened slender-web plate girders under moment gradient", Thin Wall. Struct., 102, 215-221. https://doi.org/10.1016/j.tws.2016.02.001.
  52. Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864.
  53. Prinz, G.S. (2010), "Using buckling-restrained braces in eccentric configurations", Ph.D. Thesis, Brigham Young University, Provo.
  54. Prinz, G.S. and Richards, P.W. (2012), "Seismic Performance of Buckling-Restrained Braced Frames with Eccentric Configurations", J. Struct. Eng., 138(3), 345-353. https://doi.org/10.1061/(asce)st.1943-541x.0000471.
  55. Qiu, C.X. and Zhu, S. (2017), "Performance-based seismic design of self-centering steel frames with SMA-based braces", Eng. Struct., 130, 67-82. https://doi.org/10.1016/j.engstruct.2016.09.051.
  56. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129. https://doi.org/10.12989/sem.2021.80.2.129.
  57. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.
  58. Somerville, P., Smith, N., Punyamurthula, S. and Sun, J. (1997), Development of Ground Motion Tiem Histories for Phase 2 of the FEMA/SAC Steel Project, SAC/BD-97-04, SAC Joint Venture.
  59. Talebi, E., Tahir, M.M., Zahmatkesh, F. and Kueh, A.B.H. (2015), "A numerical analysis on the performance of buckling restrained braces at fire-study of the gap filler effect", Steel Compos. Struct., 19(3), 661-678. https://doi.org/10.12989/scs.2015.19.3.661.
  60. Tremblay, R., Dehghani, M., Fahnestock, L., Herrera, R., Canales, M., Clifton, C. and Hamid, Z. (2016), "Comparison of seismic design provisions for buckling restrained braced frames in Canada, United States, Chile, and New Zealand", Struct., 8, 183-196. https://doi.org/10.1016/j.istruc.2016.06.004.
  61. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579. https://doi.org/10.12989/sss.2021.28.4.579.
  62. Vatansever, C. and Berman, J.W. (2015), "Analytical investigation of thin steel plate shear walls with screwed infill plate", Steel Compos. Struct., 19(5), 1145-1165. https://doi.org/10.12989/scs.2015.19.5.1145.
  63. Vaziri, E., Gholami, M. and Gorji Azandariani, M. (2021), "The wall-frame interaction effect in corrugated steel plate shear walls systems", Int. J. Steel Struct., 21(5), 1680-1697. https://doi.org/10.1007/s13296-021-00529-3.
  64. Veismoradi, S. and Darvishan, E. (2018), "Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions", Earthq. Struct., 15(5), 487-498. https://doi.org/10.12989/eas.2018.15.5.487.
  65. Xiao, Y., Zhou, Y. and Huang, Z. (2021), "Efficient direct displacement-based seismic design approach for structures with viscoelastic dampers", Struct., 29, 1699-1708. https://doi.org/10.1016/j.istruc.2020.12.067.
  66. Xu, L.H., Xie, X.S. and Li, Z.X. (2020), "Seismic performances of magnetorheological flag-shaped damping braced frame structures", Smart Mater. Struct., 29(7), 075032. https://doi.org/10.1088/1361-665X/ab8c28.
  67. Yang, Y., Liu, R., Xue, Y. and Li, H. (2017), "Experimental study on seismic performance of reinforced concrete frames retrofitted with eccentric buckling-restrained braces (BRBs)", Earthq. Struct., 12(1), 79-89. https://doi.org/10.12989/eas.2017.12.1.079.
  68. Yu, Y.J., Tsai, K.C., Li, C.H., Weng, Y.T. and Tsai, C.Y. (2013), "Earthquake response analyses of a full-scale five-story steel frame equipped with two types of dampers", Earthq. Eng. Struct. Dyn., 42(9), 1301-1320. https://doi.org/10.1002/eqe.2273.
  69. Zare, E., Gholami, M., Usefvand, E. and Gorji Azandariani, M. (2023), "Performance-based plastic design of bucklingrestrained braced frames with eccentric configurations", Earthq. Struct., 24(5), 317. https://doi.org/10.12989/eas.2023.24.5.317.
  70. Zaruma, S.R. and Fahnestock, L.A. (2018), "Seismic Stability of Buckling-Restrained Braced Frames", Key Eng. Mater., 763, 924-931. https://doi.org/10.4028/www.scientific.net/kem.763.924.
  71. Zhang, R., Hu, S. and Wang, W. (2023), "Probabilistic residual displacement-based design for enhancing seismic resilience of BRBFs using self-centering braces", Eng. Struct., 295, 116808. https://doi.org/10.1016/j.engstruct.2023.116808.