• 제목/요약/키워드: hybrid speed function

검색결과 69건 처리시간 0.025초

Hybrid radiation technique of frequency-domain Rankine source method for prediction of ship motion at forward speed

  • Oh, Seunghoon;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.260-277
    • /
    • 2021
  • The appropriate radiation conditions of ship motion problem with advancing speed in frequency domain are investigated from a theoretical and practical point of view. From extensive numerical experiments that have been conducted for evaluation of the relevant radiation conditions, a hybrid radiation technique is proposed in which the Sommerfeld radiation condition and the free surface damping are mixed. Based on the comparison with the results of the translating and pulsating Green function method, the optimal damping factor of the hybrid radiation technique is selected, and the observed limitations of the proposed hybrid radiation technique are discussed, along with its accuracy obtained from the numerical solutions. Comparative studies of the forward-speed seakeeping prediction methods available confirm that the results of applying the hybrid radiation technique are relatively similar to those obtained from the translating and pulsating Green function method. This confirmation is made in comparisons with the results of solely applying either the free surface damping, or the Sommerfeld radiation condition. By applying the proposed hybrid radiation technique, the wave patterns, hydrodynamic coefficients, and motion responses of the Wigley III hull are finally calculated, and compared with those of model tests. It is found that, in comparison with the model test results, the three-dimensional Rankine source method adopting the proposed hybrid radiation technique is more robust in terms of accuracy and numerical stability, as well as in obtaining the forward speed seakeeping solution.

Hybrid F-NFC에 의한 저속 디젤 기관의 속도 제어 (Speed Control for Low Speed Diesel Engine by Hybrid F-NFC)

  • 최교호;양주호
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.159-164
    • /
    • 2006
  • In recent, the marine engine of a large size is being realized a lower speed, longer stroke and a small number of cylinders for the energy saving. Consequently the variation of rotational torque became larger than former days because of the longer delay-time in fuel oil injection process and an increased output per cylinder. It was necessary that algorithms have enough robustness to suppress the variation of the delay-time and the parameter perturbation. This paper shows the structure of hybrid F-NFC against the delay-time and the perturbation of engine parameter as modeling uncertainties, and the design of the robust speed controller by hybrid F-NFC for the engine. And, The Parameter values of linear equation are determined by RC-GA for F-NFS. The hybrid F-NFC is combined the F-NFC and PID controller for filling up each.

  • PDF

터널을 통과하는 고속철도차량에 의해 형성되는 비정상 유동장의 수치해석 (Numerical Simulation of the Unsteady Flow Field Induced by a High-speed Train Passing through a Tunnel)

  • 권혁빈;이동호;김문상
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.229-236
    • /
    • 2000
  • In this study, the unsteady flow field induced by a high-speed train passing through a tunnel is numerically simulated by using an axi-symmetric Euler Equation. The modified patched grid scheme applied to a structured grid system was used to handle the relative motion of a train. The hybrid-dimensional approach which mixed 1D and axi-symmetric dimension was used to reduce the computation time and memory storage. By employing the hybrid-dimensional approach, a long tunnel as much as 5 km was able to be simulated efficiently. The results show that the maximum pressure rise in the tunnel by the entrance of the train is a function of both train speed and train-tunnel cross-sectional area ratio. The unsteady pressure fluctuation in the tunnel and around the train was also investigated in the real condition; Korean high-speed train on the Seoul-Pusan line.

  • PDF

새로운 속도함수를 갖는 레벨 셋 방법을 이용한 의료영상분할 (Image Segmentation Using Level Set Method with New Speed Function)

  • 김선월;조완현
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.335-345
    • /
    • 2011
  • 본 논문에서는 레벨 셋 방법을 이용하여 영상분할을 수행하는데 필요한 새로운 하이브리드 속도함수를 제안한다. 새롭게 제안하는 속도함수는 정확한 분할 결과를 위하여 영상의 객체가 가지고 있는 영역정보와 윤곽선정보를 함께 이용한다. 영역정보는 관심이 있는 물체영상내의 픽셀들의 밝기에 대한 확률분포의 정보를 이용하였고, 윤곽선정보는 영상의 에지의 기울기로부터 주어지는 기울기 벡터장을 이용하였다. 제안된 방법을 이용한 분할결과의 정확성을 확인하기 위하여 가상영상과 실제 사용되는 의료영상에 대하여 다양한 실험을 실시하고, 분할된 결과를 통하여 제안된 방법의 우수성을 입증하였다.

IKPCA-ELM-based Intrusion Detection Method

  • Wang, Hui;Wang, Chengjie;Shen, Zihao;Lin, Dengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3076-3092
    • /
    • 2020
  • An IKPCA-ELM-based intrusion detection method is developed to address the problem of the low accuracy and slow speed of intrusion detection caused by redundancies and high dimensions of data in the network. First, in order to reduce the effects of uneven sample distribution and sample attribute differences on the extraction of KPCA features, the sample attribute mean and mean square error are introduced into the Gaussian radial basis function and polynomial kernel function respectively, and the two improved kernel functions are combined to construct a hybrid kernel function. Second, an improved particle swarm optimization (IPSO) algorithm is proposed to determine the optimal hybrid kernel function for improved kernel principal component analysis (IKPCA). Finally, IKPCA is conducted to complete feature extraction, and an extreme learning machine (ELM) is applied to classify common attack type detection. The experimental results demonstrate the effectiveness of the constructed hybrid kernel function. Compared with other intrusion detection methods, IKPCA-ELM not only ensures high accuracy rates, but also reduces the detection time and false alarm rate, especially reducing the false alarm rate of small sample attacks.

복합 유성기어를 이용한 듀얼모드 하이브리드 자동차의 가속성능 최적화 (Accelerating Ability Optimization for Dual Mode Hybrid Vehicle Using Complex Planetary Gears)

  • 양시우;김남욱;양호림;박영일;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.97-100
    • /
    • 2006
  • Accelerating ability is one of the most important performance of the vehicle. Unlike conventional internal combustion vehicles and power-assist hybrid vehicles, the maximized acceleration of dual mode hybrid vehicles is not simply. achieved by maximizing engine or motor torque Because of the dynamic stability of planetary gear, speeds and torques control of engine, motor 1 and motor 2 is essential and according to control value, acceleration performance is changed There are two control values which are velocity and torque for each component totalling six. These six values can be variables for an objective function. However, because three velocity variables can be regarded as only one variable speed ratio and the remaining three torque variables can be solved analytically, without complicated numerical algorithm the solution for the objective function can be obtained. This optimized solution shows the best performance possible to the specified dual mode system.

  • PDF

Minimization of a Cogging Torque for an Interior Permanent Magnet Synchronous Machine using a Novel Hybrid Optimization Algorithm

  • Kim, Il-Woo;Woo, Dong-Kyun;Lim, Dong-Kuk;Jung, Sang-Yong;Lee, Cheol-Gyun;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.859-865
    • /
    • 2014
  • Optimization of an electric machine is mainly a nonlinear multi-modal problem. For the optimization of the multi-modal problem, many function calls are required with much consumption of time. To address this problem, this paper proposes a novel hybrid algorithm in which function calls are less than conventional methods. Specifically, the proposed method uses the kriging metamodel and the fill-blank technique to find an approximated solution in a whole problem region. To increase the convergence speed in local peaks, a parallel gradient assisted simplex method is proposed and combined with the kriging meta-model. The correctness and usefulness of the proposed hybrid algorithm is verified through a mathematical test function and applied into the practical optimization as the cogging torque minimization for an interior permanent magnet synchronous machine.

조합형 Fixed Point 알고리즘의 독립성분분석을 이용한 영상의 특징추출 (Image Feature Extraction Using Independent Component Analysis of Hybrid Fixed Point Algorithm)

  • 조용현;강현구
    • 한국산업융합학회 논문집
    • /
    • 제6권1호
    • /
    • pp.23-29
    • /
    • 2003
  • This paper proposes an efficient feature extraction of the images by using independent component analysis(ICA) based on neural networks of the hybrid learning algorithm. The proposed learning algorithm is the fixed point(FP) algorithm based on Newton method and moment. The Newton method, which uses to the tangent line for estimating the root of function, is applied for fast updating the inverse mixing matrix. The moment is also applied for getting the better speed-up by restraining an oscillation due to compute the tangent line. The proposed algorithm has been applied to the 10,000 image patches of $12{\times}12$-pixel that are extracted from 13 natural images. The 144 features of $12{\times}12$-pixel and the 160 features of $16{\times}16$-pixel have been extracted from all patches, respectively. The simulation results show that the extracted features have a localized characteristics being included in the images in space, as well as in frequency and orientation. And the proposed algorithm has better performances of the learning speed than those using the conventional FP algorithm based on Newton method.

  • PDF

PD-슬라이딩 모드 제어의 절환을 통한 강인한 SPMSM 속도 제어기 설계 (Design of SPMSM Robust Speed Servo Controller Switching PD and Sliding Mode Control Strategies)

  • 손주범;서영수;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.249-255
    • /
    • 2010
  • The paper proposes a new type of robust speed control strategy for permanent magnet synchronous motor by using PD-sliding mode hybrid control. The PD control has a good performance in the transient region while the sliding mode controller provides the robustness against system uncertainties. Taking advantages of the two control strategies, the proposed control method utilizes the PD control in the approaching region to the sliding surface and the sliding mode control near at the sliding surfaces. The chattering problem of the sliding mode controller is eliminated by applying the saturation function for the switching function of the sliding mode control. The stability of the sliding mode control is verified by using Lyapunov function with the proper selection of variable gains. It is shown that with this simple switching algorithm, stability of the overall hybrid control system is ensured. Through the simulations, the PD-sliding mode algorithm is shown to have a good performance in the transient response as well as being robust against disturbances. The robustness of the PD-sliding mode algorithm is further demonstrated against various external disturbances in the real experiments of SPMSM motor control.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.