• 제목/요약/키워드: hybrid semi-active control

검색결과 38건 처리시간 0.025초

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • 제37권3호
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.

실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 준능동 제어알고리즘 성능 비교 (Performance Comparison of Semi-active Control Algorithms for a Large-scale MR Damper using Real-time Hybrid Test Method)

  • 박은천;이성경;이헌재;최강민;문석준;정형조;정희산;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.648-654
    • /
    • 2007
  • This paper presents the result of a comparison study to evaluate the performance of several semi-active control algorithms for use with large-scale MR damper applied to a building structure under seismic excitation using real-time hybrid test method. Recently, a variety of semi-active control algorithm studies are developed and generally evaluated the performance by using numerical analysis. In this paper real-time hybrid test method was applied to performance evaluating of semi-active control algorithms including a clipped optimal algorithm and the modulated homogeneous friction algorithm.

  • PDF

Control of a building complex with Magneto-Rheological Dampers and Tuned Mass Damper

  • Amini, F.;Doroudi, R.
    • Structural Engineering and Mechanics
    • /
    • 제36권2호
    • /
    • pp.181-195
    • /
    • 2010
  • Coupled building control is a viable method to protect tall buildings from seismic excitation. In this study, the semi-active control of a building complex is investigated for mitigating seismic responses. The building complex is formed of one main building and one podium structure connected through Magneto-Rheological (MR) Dampers and Tuned Mass Damper. The conventional semi-active control techniques require a primary controller as a reference to determine the desired control force, and modulate the input voltage of the MR damper by comparing the desired control force. The fuzzy logic directly determines the input voltage of an MR damper from the response of the MR damper. The control performance of the proposed fuzzy control technique for the MR damper is evaluated for the control problem of a seismically-excited building complex. In this paper, a building complex that include a 14-story main building and an 8-story podium structure is applied as a numerical example to demonstrate the effectiveness of semi-active control with Magneto-Rheological dampers and its comparison with the passive control with the Tuned Mass Damper and two uncoupled buildings and hybrid semi-active control including the Tuned Mass Damper and Magneto-Rheological dampers while they are subject to the earthquake excitation. The numerical results show that semi-active control and hybrid semi-active control can significantly mitigate the seismic responses of both buildings, such as displacement and shear force responses, and fuzzy control technique can effectively mitigate the seismic response of the building complex.

Fuzzy hybrid control of a wind-excited tall building

  • Kang, Joo-Won;Kim, Hyun-Su
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.381-399
    • /
    • 2010
  • A fuzzy hybrid control technique using a semi-active tuned mass damper (STMD) has been proposed in this study for mitigation of wind induced motion of a tall building. For numerical simulation, a third generation benchmark is employed for a wind-excited 76-story building. A magnetorheological (MR) damper is used to compose an STMD. The proposed control technique employs a hierarchical structure consisting of two lower-level semi-active controllers (sub-controllers) and a higher-level fuzzy hybrid controller. Skyhook and groundhook control algorithms are used as sub-controllers. When a wind load is applied to the benchmark building, each sub-controller provides different control commands for the STMD. These control commands are appropriately combined by the fuzzy hybrid controller during realtime control. Results from numerical simulations demonstrate that the proposed fuzzy hybrid control technique can effectively reduce the STMD motion as well as building responses compared to the conventional hybrid controller. In addition, it is shown that the control performance of the STMD is superior to that of the sample TMD and comparable to an active TMD, but with a significant reduction in power consumption.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

가변강성 및 가변감쇠 조절장치를 이용한 구조물의 지진응답제어 (Seismic Response Control of Structures Using Variable Stiffness and Variable Damping Devices)

  • 고현무;옥승용;우지영;박관순
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.449-456
    • /
    • 2003
  • Hybrid semi-active control system is applied to improve the seismic peformance of the building structure against earthquake excitation and the LQR-based semi-active control algorithm is developed to tune the integrated stiffness/damping characteristics of the hybrid system complementarily. Numerical simulation for a 8-story shear building has been carried out to verify the applicability and effectiveness of the proposed method. Analysis results showed that the hybrid system can be a compromising solution to the seismic response control problem, compared with conventional variable stiffness or variable damping systems. Comparison results proved that the proposed algorithm can perform refined tuning of the stiffness and damping coefficients of the hybrid semi-active control system better than sliding mode control algorithm.

  • PDF

Investigation of the semi-active electromagnetic damper

  • Montazeri-Gh, Morteza;Kavianipour, Omid
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.419-434
    • /
    • 2014
  • In this paper, the electromagnetic damper (EMD), which is composed of a permanent-magnet rotary DC motor, a ball screw and a nut, is considered to be analyzed as a semi-active damper. The main objective pursued in the paper is to study the two degrees of freedom (DOF) model of the semi-active electromagnetic suspension system (SAEMSS) performance and energy regeneration controlled by on-off and continuous damping control strategies. The nonlinear equations of the SAEMSS must therefore be extracted. The effects of the EMD characteristics on ride comfort, handling performance and road holding for the passive electromagnetic suspension system (PEMSS) are first analyzed and damping control strategies effects on the SAEMSS performance and energy regeneration are investigated next. The results obtained from the simulation show that the SAEMSS provides better performance and more energy regeneration than the PEMSS. Moreover, the results reveal that the on-off hybrid control strategy leads to better performance in comparison with the continuous skyhook control strategy, however, the energy regeneration of the continuous skyhook control strategy is more than that of the on-off hybrid control strategy (except for on-off skyhook control strategy).

Complete decentralized displacement control algorithm

  • Ruiz-Sandoval, M.E.;Morales, E.
    • Smart Structures and Systems
    • /
    • 제11권2호
    • /
    • pp.163-183
    • /
    • 2013
  • Control systems have been greatly studied in recent years and can be classified as: passive, active, semi-active or hybrid systems. Most forms of control systems have been applied in a centralized manner where all the information is sent to a central node where control the algorithm is then calculated. One of the possible problems of centralized control is the difficulty to scale its application. In this paper, a completely decentralized control algorithm is analytically implemented. The algorithm considers that each of the control systems makes the best decision based solely on the information collected at its location. Semi-active control is used in preference to active control because it has minimal energy consumption, little to no possibility of destabilization, a reduction in the possibility of data saturation, and a reduction in the response time in comparison to centralized control.

대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용 (Real-time Hybrid Testing a Building Structure Equipped with Full-scale MR dampers and Application of Semi-active Control Algorithms)

  • 박은천;이성경;이헌재;문석준;정형조;민경원
    • 한국전산구조공학회논문집
    • /
    • 제21권5호
    • /
    • pp.465-474
    • /
    • 2008
  • 실시간 하이브리드 실험법(real-time hybrid testing method)은 구조물의 수치해석부와 실험부 부분구조를 운동방정식으로 통합하여 실시 간으로 동시에 계산과 실험을 수행하는 방법이다 본 연구는 실시간 하이브리드 실험법을 사용하여 수동 및 준능동 MR감쇠기가 설치된 건축구조물의 내진성능을 정량적으로 평가한다. 건물 모델은 실물 크기 5층 건물을 강제진동실험 결과를 통해 식별한 수치모델로 사용하였고, MR감쇠기는 실험적 부분구조르 UTM에 설치되었다. 본 연구에서 수행되는 실시간 하이브리드 실험은 사인파 및 지진파 가진을 통하여 얻은 결과와 전류에 따른 MR감쇠기의 제어력을 이용하여 얻은 Bouc-Wen모델을 사용하여 얻은 해석모델과 일치함으로 그 유효성을 입증하였다. 또한 예비연구로써 구조물의 응답을 최적으로 제어하기 위한 clipped-optimal 제어알고리즘과 modulated homogeneous friction 준능동 제어알고리즘을 MR감쇠기에 적용하였다. 각 전류별 Bouc-Wen모델을 곡선맞춤하여 각각의 Bouc-Wen모델 파라미터를 식별하였으며 그 결과를 준능동 제어알고리즘 수치해석에 적용하였다. 또한 실시간 하이브리드 실험법을 이용한 준능동 제어 실험결과와 해석결과를 비교하여 준능동 제어알고리즘의 성능을 평가함에 있어 실시간 하이브리드 실험이 합리적임을 보여준다.

바닥판 구조물의 진동제어를 위한 준능동 TMD의 적용 (Application of Semi-active TMD for Floor Vibration Control)

  • 김기철;곽철승
    • 한국공간구조학회논문집
    • /
    • 제7권5호
    • /
    • pp.49-56
    • /
    • 2007
  • 바닥판 구조물의 진동제어를 위한 제어시스템으로 제어력의 조절에 따라서 수동, 능동, 준능동 제어 시스템이 구분할 수 있다. 본 논문에서는 MR감쇠기와 수동 TMD를 조합한 준능동 TMD(MR-TMD)의 제어기법에 따른 바닥판 구조물의 진동제어성능을 알아보았다 MR-TMD의 감쇠기 모형화 방법에 따라서 Groundhook 모델과 Skyhook 모델이 있으며 주구조물인 바닥판 구조물의 진동제어에 있어서는 Skyhook 모델보다 Groundhook 모델보다 효과적인 것을 볼 수 있다. 그러나 TMD변위가 제한적인 경우에 MR-TMD의 감쇠기를 Skyhook 모델로 모형화하여 진동을 제어할 필요가 있다 그리고 Hybrid 제어기법을 적용할 경우에 바닥판 구조물과 TMD를 동시에 최적으로 제어할 수 있으므로 우수한 제어성능을 보이고 있다.

  • PDF