• Title/Summary/Keyword: hybrid reliability

Search Result 412, Processing Time 0.023 seconds

Recent Technological Tendency of Laser/Arc Hybrid Welding (레이저/아크 하이브리드용접기술의 최신 동향)

  • Kim, Youngsik;Kil, Sangcheol
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.4-15
    • /
    • 2013
  • The laser/arc hybrid welding process is a new process combining the laser beam and the arc as welding heat source. The laser beam and arc influence and assist one another. By application of hybrid welding, synergistic effects are achievable, and disadvantage of the respective processes can be compensated. The laser-arc hybrid welding process has good potential to extend the field of applications of laser technology, and provide significant improvements in weld quality and process efficiency in manufacturing applications. This review analyses the recent advances in the fundamental understanding of hybrid welding processes using the works of the data base of Web of Science (SCI-Expanded) since the 2000 year. The research activity on the hybrid welding has been become more actively since 2006, especially in China, presenting the most research papers in the world. Since the hybrid welding process was adopted in manufacturing of the automobile in Europe in the early of 2000's, its adopting is widely expanded in the field of manufacturing of automobile, ship building, steel construction and the other various industry. The hybrid welding process is expected to advance toward higher productivity, higher precision, higher reliability through the mixing of high power and flexible fiber laser or disk laser and digitalized pulsed arc source.

Commercial Finite Element Program-based Reliability Analysis of Dam Structures (상용 유한요소 프로그램에 기초한 댐 구조물의 신뢰성해석)

  • 허정원;이정학
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.103-110
    • /
    • 2003
  • A hybrid structural reliability analysis method that integrates a commercial finite element program and a reliability analysis algorithm is proposed to estimate the safety of real structures in this paper. Since finite element method (FEM) is most commonly and widely used in the analysis and design practice of real structures, it appears to be necessary to use general FEM program in the structural reliability analysis. In this case, simple conventional reliability methods cannot be used because the limit state function can only be expressed in an algorithmic form. The response surface method(RSM)-based reliability algorithm with the first-order reliability method (FORM) found to be ideal in this respect and is used in this paper. The intention of use of RSM is to develop, albeit approximately, an explicit expression of the limit state function for real structures. The applicability of the proposed method to real structures is examined with help of the example in consideration of a concrete dam. Both the strength and serviceability limit states are considered in this example.

  • PDF

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Development of the Foldable Manual/Power Hybrid Wheelchair ($\cdot$전동 복합기능의 접이식 휠체어 개발)

  • Choi Young Chul;Rhee Kun Min;Choi Hwa Soon;Seo Young Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.172-180
    • /
    • 2006
  • Although there existed many types of manual/power hybrid wheelchairs, their use was not widespread because of their inconvenience in converting drive system and in folding frames. To carry a wheelchair in the car or to convert driving methods, some hard work of disassembling or exchanging wheels was required for most of currently available hybrid wheelchairs. In this study, the standard foldable manual wheelchair was reformed to a power wheelchair by installing the newly developed Axial Flux Permanent Magnet(AFPM) type of brush less direct current(BLDC) motor on each rear hub of wheelchair. This wheelchair could be driven by manual or electric power without exchanging. wheels, thus no additional work was needed for carriage or for power conversion. The developed wheelchair was evaluated for durability, stability, maneuverability, cost, and reliability in accordance with the Korean standards. The results indicated that the developed hybrid wheelchair was good enough for commercialization comparing to other imported wheelchairs.

Design of Hybrid Type Streetlight for Railway Station with Renewable Energy (신재생에너지를 이용한 철도역사용 복합형 가로등 설계)

  • Yoon, Yong-Ho;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2103-2108
    • /
    • 2016
  • Energy saving is as important as developments of green energy and alternative energy. This paper describes design of hybrid type streetlight for railway station with renewable energy as photovoltaic, wind, secondary battery. In designing hybrid type streetlight for railway station, generation energy with renewable energy and reliability is strongly needed to meet the demand of railway station. In order to achieve the high performance of a streetlight, photovoltaic, wind and secondary battery system, PV tracker, monitoring and GUI system with logging function are designed. To verify of performance of hybrid type streetlight for railway station, we have demonstration test to get of generation energy and flow of energy and the results are present in this paper.

A Cascaded Hybrid Multilevel Inverter Incorporating a Reconfiguration Technique for Low Voltage DC Distribution Applications

  • Khomfoi, Surin
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.340-350
    • /
    • 2016
  • A cascaded hybrid multilevel inverter including a reconfiguration technique for low voltage dc distribution applications is proposed in this paper. A PWM generation fault detection and reconfiguration paradigm after an inverter cell fault are developed by using only a single-chip controller. The proposed PWM technique is also modified to reduce switching losses. In addition, the proposed topology can reduce the number of required power switches compared to the conventional cascaded multilevel inverter. The proposed technique is validated by using a 3-kVA prototype. The switching losses of the proposed multilevel inverter are also investigated. The experimental results show that the proposed hybrid inverter can improve system efficiency, reliability and cost effectiveness. The efficiency of proposed system is 97.45% under the tested conditions. The proposed hybrid inverter topology is a promising method for low voltage dc distribution and can be applied for the multiple loads which are required in a data center or telecommunication building.

Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Li, Minghao;Lam, Frank
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.101-117
    • /
    • 2014
  • This paper presents a reliability-based analysis on seismic performance of timber-steel hybrid shear wall systems. Such system is composed of steel moment resisting frame and infill wood frame shear wall. The performance criteria of the hybrid system with respect to different seismic hazard levels were determined through a damage assessment process, and the effectiveness of the infill wood shear walls on improving the seismic performance of the hybrid systems was evaluated. Performance curves were obtained by considering different target non-exceedance probabilities, and design charts were further established as a function of seismic weight. Wall drift responses and shear forces in wood-steel bolted connections were used as performance criteria in establishing the performance curves to illustrate the proposed design procedure. It was found that the presence of the infill wood shear walls significantly reduced the non-performance probabilities of the hybrid wall systems. This study provides performance-based seismic evaluations on the timber-steel hybrid shear walls in support of future applications of such hybrid systems in multi-story buildings.

Optimal Maintenance Cycle Plan of Aerial Weapon System Radar Considering Maintenance Cost (운영유지 비용을 고려한 항공무기체계 레이다의 최적정비주기 설정 방안)

  • Tak, Jung Ho;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.184-191
    • /
    • 2018
  • Purpose: The purpose of this study is to propose a method to calculate the optimal preventive maintenance cycle of radar used in the aviation weapon system of ROKAF. Methods: A hybrid model is used to estimate the optimal preventive maintenance cycle in a system that can perform condition based predictive maintenance (CBPM) through continuous diagnosis. The failure data of the radars operating in the military were used to calculate the reliability. Results: According to the research results, the reliability threshold of the radar began to decrease after 5 flights, and decreased rapidly after 12 flights. Since the second check, costs have continued to decline. Conclusion: A method is proposed to determine the cycle of optimal preventive maintenance of radar within operational budget through modeling results between reliability limit and cost for radar. The results can be used to determine the optimal preventive maintenance cycle and frequency of various avionics equipment.

Influence of ITO-Electrode Deposition Method on the Electro-optical Characteristics of Blue LEDs (ITO 전극 형성 방법이 청색 발광 다이오드의 전기 광학적 특성에 미치는 영향)

  • Han, Jae-Ho;Kim, Sang-Bae;Jeon, Dong-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.43-50
    • /
    • 2007
  • We have investigated the electro-optical characteristics and reliability of LEDs with the Indium-Tin-Oxide (ITO) electrodes formed by different deposition methods: electron beam evaporation, sputtering, and hybrid method of electron beam evaporation and subsequent sputtering. The deposition method of the ITO electrode has significant influence on the electro-optical characteristics and reliability of LEDs. The LEDs with the ITO electrodes formed by sputtering and electron beam evaporation have problems caused by sputtering damage and increased electrical resistance, respectively, and the problems have been solved by the hybrid method.

The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor

  • Choi, Min-Geun;Kang, Soo-Bin;Yoon, Jung Rag;Lee, Byung Gwan;Jeong, Dae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1102-1106
    • /
    • 2015
  • A hybrid supercapacitor (HS) is an energy storage device used to enhance the low weight energy density (Wh/kg) of a supercapacitor. On the other hand, a sudden decrease in capacity has been pointed out as a reliability problem after many charge/discharge cycles. The reliability problem of a HS affects the early aging process. In this study, the capacity performance of a HS was observed after charge/discharge. For detailed analysis of the initial charge/discharge cycles, the charge and discharge curve was measured at a low current density. In addition, a solid electrolyte interphase (SEI) layer was confirmed after the charge/discharge. A HC composed of a lithium titanate (LTO) anode and active carbon cathode was used. The charge/discharge efficiency of the first cycle was lower than the late cycles and the charge/discharge rate was also lower. This behavior was induced by SEI layer formation, which consumed Li ions in the LTO lattice. The formation of a SEI layer after the charge/discharge cycles was confirmed using a range of analysis techniques.