• Title/Summary/Keyword: hybrid reliability

Search Result 412, Processing Time 0.021 seconds

Trend and future prospect on the development of technology for electronic security system (기계경비시스템의 기술 변화추세와 개발전망)

  • Chung, Tae-Hwang;So, Sung-Young
    • Korean Security Journal
    • /
    • no.19
    • /
    • pp.225-244
    • /
    • 2009
  • Electronic security system is composed mainly of electronic-information-communication device, so system technology, configuration and management of the electronic security system could be affected by the change of information-communication environment. This study is to propose the future prospect on the development of technique for electronic security system through the analysis of the trend and the actual condition on the development of technique. This study is based on literature study and interview with user and provider of electronic security system, also survey was carried out by system provider and members of security integration company to come up with more practical result. Hybrid DVR technology that has multi-function such as motion detection, target tracking and image identification is expected to be developed. And 'Embedded IP camera' technology that internet server and image identification software are built in. Those technologies could change the configuration and management of CCTV system. Fingerprint identification technology and face identification technology are continually developed to get more reliability, but continual development of surveillance and three-dimension identification technology for more efficient face identification system is needed. As radio identification and tracking function of RFID is appreciated as very useful for access control system, hardware and software of RFID technology is expected to be developed, but government's support for market revitalization is necessary. Behavior pattern identification sensor technology is expected to be developed and could replace passive infrared sensor that cause system error, giving security guard firm confidence for response. The principle of behavior pattern identification is similar to image identification, so those two technology could be integrated with tracking technology and radio identification technology of RFID for total monitoring system. For more efficient electronic security system, middle-ware's role is very important to integrate the technology of electronic security system, this could make possible of installing the integrated security system.

  • PDF

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.