• Title/Summary/Keyword: hybrid particulate reinforced composites

Search Result 3, Processing Time 0.018 seconds

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

Mechanical Properties of Cellulose-filled Epoxy Hybrid Composites Reinforced with Alkali-treated Hemp Fiber (염기 처리 대마 섬유로 강화된 셀룰로오스 충전 에폭시 하이브리드 복합재의 기계적 물성)

  • Anand, P.;Anbumalar, V.
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • There is a limit for deforestation in order to keep the environmental cycle undisturbed. The heart of the paper is to replace the wood to a maximum extent to obtain a sustainable environment. This research aims at new natural composites in which treated hemp fiber used as reinforcement, synthetic cellulose used as particulate to improve the adhesion between matrix - fiber interface and Epoxy LY556 acted as matrix fabricated by hand layup technique. The density, water absorption, tensile properties, impact strength, hardness, flexural properties and compressive properties have been evaluated under ASTM standards and compare the results with existing materials such as wood, aluminium, etc., The composite hemp fiber reinforced polymer (HFRP) could be exploited as an effective replacement for wood and it would be suitable for automotive applications by comparing results.

Study of transfer film in the sliding of nanoscale CuO-filled and fiber-reinforced polyphenylene sulfide (PPS) composites (CuO nanoparticle 및 fiber 로 구성된 PPS 복합재료의 sliding 조건하의 transfer film 에관한 연구)

  • Cho, Min-Haeng;Bahadur, Shyam;Park, Hye-Young;Kim, Yoon-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.967-972
    • /
    • 2004
  • The role of transfer films formed during sliding of polymer composites against steel counterfaces was studied in terms of the tribological behaviors of composites. Four kinds of composites were included in this study: (1) unfilled PPS, (2) PPS+2%CuO, (3) PPS+2%CuO+5% carbon fiber (CF), and (4) PPS+2%CuO+15%Kevlar. The filler material CuO was in nanoscale particulate form and the reinforcing material was in the form of short fibers. The composites were prepared by compression molding at $310^{\circ}C$ and sliding tests were run in the pin-on-disk sliding configuration. The counterface was made of tool steel hardened to 55-60 HRC and finished to a surface roughness of 0.09-0.10 ${\mu}m$ Ra. Wear tests were run for 6 hrs at the sliding speed of 1 m/s and contact pressure of 0.65 MPa. Transfer films formed on the counterfaces during sliding were investigated using AFM and SEM. The results showed that as the transfer film became smooth and uniform, wear rate decreased. PPS+2%CuO+15%Kevlar composite showed the lowest steady state wear rate in this study and its transfer film showed the smoothest and the most uniform characteristics. The examination of worn surfaces of PPS+2%CuO composite using X-ray area scanning (dot mapping) showed back-transfer of steel counterface material to the polymer pin surface. This behavior is believed to strengthen the polymer pin surface during sliding thereby contributing to the decrease in wear rate.

  • PDF