• 제목/요약/키워드: hybrid optimization technique

검색결과 131건 처리시간 0.021초

Study of Hybrid Optimization Technique for Grain Optimum Design

  • Oh, Seok-Hwan;Kim, Yong-Chan;Cha, Seung-Won;Roh, Tae-Seong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.780-787
    • /
    • 2017
  • The propellant grain configuration is a design variable that determines the shape and performance of a solid rocket motor. Grain configuration variables have complicated effects on the motor performance; so the global optimization problem has to be solved in order to design the configuration variables. The grain performance has been analyzed by means of the grain burn-back and internal ballistic analysis, and the optimization technique searches for the configuration variables that satisfy the requirements. The deterministic and stochastic optimization techniques have been applied for the grain optimization, but the results are imperfect. In this study, the optimization design of the configuration variables has been performed using the hybrid optimization technique, which combines those two techniques. As a result, the hybrid optimization technique has proved to be efficient for the grain optimization design.

선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계 (Hybrid Structural Control System Design Using Preference-Based Optimization)

  • 박원석;박관순;고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF

유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증 (Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating)

  • 정대성;김철영
    • 한국지진공학회논문집
    • /
    • 제10권6호
    • /
    • pp.19-28
    • /
    • 2006
  • 기존의 유한요소모델개선기법들은 측정에 의한 모달 데이터와 해석적으로 계산된 시스템 행렬로 구성된 수학적인 목적함수를 사용하거나 업데이팅 변수에 관한 모달 특성의 미분함수를 사용하여야만 한다. 따라서 교량구조물과 같은 복잡한 구조물에의 적용이 어렵고 역해석에 있어 해의 안정성 문제가 발생할 수 있다. 또한 개선된 모델이 물리적인 의미를 지니지 못할 수도 있다. 본 논문에서는 유전자알고리즘과 Welder-Mead의 심플렉스기법을 사용한 하이브리드 최적화 유한요소모델개선기법을 제안하였다. 하이브리드 최적화 기법의 성능을 검증하기 위해 3개의 국부최소값과 1개의 전체최소값을 갖는 Goldstein-Price 함수를 사용하여 비선형문제에 대한 적용성을 검토하였다. 또한 최적화목적함수의 영향을 검토하기 위해 10개의 자유도를 갖는 스프링-질량 모델을 사용하여 변수연구를 수행하였다. 최종적으로 수치해석을 통해서 질량과 강성을 동시에 개선하기 위한 최적화 목적함수를 제시하고, 제안된 하이브리드 최적화 기법이 유한요소모델개선을 위해 매우 효과적인 방법임을 입증하였다.

Dynamic Embedded Optimization Applied to Power System Stabilizers

  • Sung, Byung Chul;Baek, Seung-Mook;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.390-398
    • /
    • 2014
  • The systematic optimal tuning of power system stabilizers (PSSs) using the dynamic embedded optimization (DEO) technique is described in this paper. A hybrid system model which has the differential-algebraic-impulsive-switched (DAIS) structure is used as a tool for the DEO of PSSs. Two numerical optimization methods, which are the steepest descent and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms, are investigated to implement the DEO using the hybrid system model. As well as the gain and time constant of phase lead compensator, the output limits of PSSs with non-smooth nonlinearities are considered as the parameters to be optimized by the DEO. The simulation results show the effectiveness and robustness of the PSSs tuned by the proposed DEO technique on the IEEE 39 bus New England system to mitigate system damping.

A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures

  • Sheikhi, Mojtaba;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • 제46권3호
    • /
    • pp.403-416
    • /
    • 2013
  • This paper describes new optimization strategy that offers significant improvements in performance over existing methods for geometry design of frame structures. In this study, an imperialist competitive algorithm (ICA) and ant colony optimization (ACO) are combined to reach to an efficient algorithm, called Imperialist Competitive Ant Colony Optimization (ICACO). The ICACO applies the ICA for global optimization and the ACO for local search. The results of optimal geometry for three benchmark examples of frame structures, demonstrate the effectiveness and robustness of the new method presented in this work. The results indicate that the new technique has a powerful search strategies due to the modifications made in search module of ICACO. Higher rate of convergence is the superiority of the presented algorithm in comparison with the conventional mathematical methods and non hybrid heuristic methods such as ICA and particle swarm optimization (PSO).

혼합모델을 이용한 차체 단면의 최적화 방법에 관한 연구 (Optimization of Body Section usign Hybrid Model)

  • 고병식
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.437-443
    • /
    • 2000
  • The optimal design problem for increasing dynamic stiffness using hybrid model which composed of original detailed BIW(body in white) and impinged beam elements is investigated. Using the characteristics of the beam elements and design sensitivity analysis this approach utilizes an optimization technique to determine the optimal section properties of beam elements. The constraint is to increase the first natural frequency by five percent compared with original one. The results show that the first torsion and bending natural frequencies are increased by five percent using hybrid model and optimization. These results indicate that this optimization method can be employed to enhance the dynamic stiffness of vehicle body structure in design concept stage.

  • PDF

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.

목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계 (Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability)

  • 옥승용;박관순;송준호;고현무
    • 한국지진공학회논문집
    • /
    • 제12권2호
    • /
    • pp.9-22
    • /
    • 2008
  • 이 논문에서는 구조물의 내진성능 향상을 위한 방법으로서 구조부재 및 수동형 감쇠기의 통합최적설계기법을 제시한다. 이는 구조부재 및 감쇠기의 최적배치를 다루는 최적화기법이다. 통합시스템의 최적설계를 위하여 다목적최적화기법을 도입하고, 이를 보다 효율적으로 다루기 위하여 목표신뢰성 제한조건을 갖는 다목적최적화문제로 재구성하였다. 수치해석 예제를 통하여 다양한Pareto 최적해를 제시하였으며, 이들이 기존 설계방법에 상응하는 순차적 설계방법 및 가중합방법에 따른 단일목적함수 최적화방법을 포괄함을 검증하였다. 여러 Pareto 최적해로부터 강성 및 감쇠장치의 사용량을 달리하는 3가지 대표설계안을 선택하고 이들의 내진성능을 다양한 지진하중에 대하여 비교 분석하였다. 이로부터 제시하는 방법이 구조물의 내진성능 향상을 위한 설계방법으로서 효율적으로 적용될 수 있을 것으로 기대된다.

Techno-Economic Optimization of a Grid-Connected Hybrid Energy System Considering Voltage Fluctuation

  • Saib, Samia;Gherbi, Ahmed;Kaabeche, Abdelhamid;Bayindir, Ramazan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.659-668
    • /
    • 2018
  • This paper proposes an optimization approach of a grid-connected photovoltaic and wind hybrid energy system including energy storage considering voltage fluctuation in the electricity grid. A techno-economic analysis is carried out in order to minimize the size of hybrid system by considering the benefit-cost. Lithium-ion battery type is used for both managing the electricity selling to the grid and reducing voltage fluctuation. A new technique is developed to limit the voltage perturbation caused by the solar irradiance and the wind speed through determining the state-of-charge of battery for every hour of a day. Improved particle swarm optimization (PSO) methods, referred to as FC-VACPSO which combines Fast Convergence Particle Swarm Optimization (FCPSO) method and Variable Acceleration Coefficient Based Particle Swarm Optimization (VACPSO) method are used to solve the optimization problem. A comparative study has been performed between standard PSO method and PSO based methods to extract the best size with the benefit cost. A sensitivity analysis has been studied for different kinds and costs of batteries, by considering variable and constant state-ofcharge of battery. The simulations, performed under Matlab environment, yield good results using the FC-VACPSO method regarding the convergence and the benefit cost of the hybrid system.

구조-제어시스템의 동시최적설계를 위한 유전자알고리즘 및 Goal Programming 기법 (Genetic Algorithm and Goal Programming Technique for Simultaneous Optimal Design of Structural Control System)

  • 옥승용;박관순;고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.497-504
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system nay be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

  • PDF