• 제목/요약/키워드: hybrid norm$l^1/l^2$ norm

검색결과 5건 처리시간 0.017초

강인한 역산으로서의 하이브리드 $l^1/l^2$ norm IRLS 방법의 효율적 구현기법 (An Efficient Implementation of Hybrid $l^1/l^2$ Norm IRLS Method as a Robust Inversion)

  • 지준
    • 지구물리와물리탐사
    • /
    • 제10권2호
    • /
    • pp.124-130
    • /
    • 2007
  • 탄성파 역산에 있어서 가장 널리 사용되는 최소자승($l^2$ norm)해는 이상치(outlier)에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 $l^1$ norm을 최소화하는 해는 이상치에 강인한 면을 보이나 일반적으로 좀 더 많은 계산이 필요하다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)을 이용하면 이러한 $l^1$ norm 문제의 근사해(approximate solution)를 효율적으로 구할 수 있다. 본 논문에서는 작은 크기의 잔여분은 $l^2$ norm으로 처리하며, 큰 크기의 잔여분은 $l^1$ norm으로 처리하는 하이브리드 $l^1/l^2$ norm 최소화를 IRLS 방법에 쉽게 적용하는 구현 기법을 소개한다. 소개된 알고리즘은 특이치(singularity)처리를 위한 임계값의 결정에 민감하게 반응하는 기존의 $l^1$ norm IRLS 방법과는 달리 임계값 결정에 상관없이 늘 강인한 역산의 특성을 보여준다.

Hybrid L1/L2 를 이용한 주파수 영역 탄성파 파형역산 (Robust seismic waveform inversion using backpropagation algorithm)

  • 정우근;하태영;신창수
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.124-129
    • /
    • 2007
  • For seismic imaging and inversion, the inverted image depends on how we define the objective function. ${\ell}^1$-norm is more robust than ${\ell}^2$-norm. However, it is difficult to apply the Newton-type algorithm directly because the partial derivative for ${\ell^1$-norm has a singularity. In our paper, to overcome the difficulties of singularities, Huber function given by hybrid ${\ell}^1/{\ell}^2$-norm is used. We tested the robustness of our new object function with several noisy data set. Numerical results show that the new objective function is more robust to band limited spiky noise than the conventional object function.

  • PDF

A hybrid-separate strategy for force identification of the nonlinear structure under impact excitation

  • Jinsong Yang;Jie Liu;Jingsong Xie
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.119-133
    • /
    • 2023
  • Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The 'hybrid' means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The 'separate' means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.

STRONG CONVERGENCE OF THE MODIFIED HYBRID STEEPEST-DESCENT METHODS FOR GENERAL VARIATIONAL INEQUALITIES

  • Yao, Yonghong;Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.179-190
    • /
    • 2007
  • In this paper, we consider the general variational inequality GVI(F, g, C), where F and g are mappings from a Hilbert space into itself and C is the fixed point set of a nonexpansive mapping. We suggest and analyze a new modified hybrid steepest-descent method of type method $u_{n+l}=(1-{\alpha}+{\theta}_{n+1})Tu_n+{\alpha}u_n-{\theta}_{n+1g}(Tu_n)-{\lambda}_{n+1}{\mu}F(Tu_n),\;n{\geq}0$. for solving the general variational inequalities. The sequence $\{x_n}\$ is shown to converge in norm to the solutions of the general variational inequality GVI(F, g, C) under some mild conditions. Application to constrained generalized pseudo-inverse is included. Results proved in the paper can be viewed as an refinement and improvement of previously known results.

바코드 신호의 강인한 복원 (Robust Restoration of Barcode Signals)

  • 이한아;이정태
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1859-1864
    • /
    • 2007
  • Existing barcode signal restoration algorithms are not robust to unmodeled outliers that may exist in scanned barcode images due to scratches, dirts, etc. In this paper, we describe a robust barcode signal restoration algorithm that uses the hybrid $L_1-L_2$ norm as a similarity measure. To optimze the similarity measure, we propose a modified iterative reweighted least squares algorithm based on the one step minimization of a quadratic surrogate function. In the simulations and experiments with barcode images, the proposed method showed better robustness than the conventional MSE based method. In addition, the proposed method converged quickly during optimization process.