• Title/Summary/Keyword: hybrid network

Search Result 1,409, Processing Time 0.025 seconds

A Hybrid Neural Network Framework for Hour-Ahead System Marginal Price Forecasting (하이브리드 신경회로망을 이용한 한시간전 계통한계가격 예측)

  • Jeong, Sang-Yun;Lee, Jeong-Kyu;Park, Jong-Bae;Shin, Joong-Rin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.162-164
    • /
    • 2005
  • This paper presents an hour-ahead System Marginal Price (SMP) forecasting framework based on a neural network. Recently, the deregulation in power industries has impacted on the power system operational problems. The bidding strategy of market participants in energy market is highly dependent on the short-term price levels. Therefore, short-term SMP forecasting is a very important issue to market participants to maximize their profits. and to market operator who may wish to operate the electricity market in a stable sense. The proposed hybrid neural network is composed of tow parts. First part of this scheme is pattern classification to input data using Kohonen Self-Organizing Map (SOM) and the second part is SMP forecasting using back-propagation neural network that has three layers. This paper compares the forecasting results using classified input data and unclassified input data. The proposed technique is trained, validated and tested with historical date of Korea Power Exchange (KPX) in 2002.

  • PDF

Active vibration isolation of a hydraulic system using the hetero-synaptic neural network (헤테로-시넵틱 신경회로망을 이용한 유압시스템의 진동제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.273-277
    • /
    • 1995
  • Many hudraulic components have nonlinearities to some extent. These nonlinearities often cause the time delay, thus degrading the performance of the hydraulic control systems and making it difficult to modelthem. In this paper, a new vibration isolation control algorithm that eliminates the necessity of a sophiscated modeling of hydraulic system was proposed. The algotithm is a hybrid type control shecheme consisting of a linear controller and a hetero-synaptic neural network controller. Using this control scheme, simulations and experiments were performed for 1 DOF(Degree of freedom) and 2 DOF vibration isolation. The hybrid type control algorithm can isolate the base vibration signifcantly rather than linear control algorithm. And from the weights in hetero-synaptic neural network, we can get the 2nd equivalent differentialmodel of the hydraulic control system with on-line control operation. This equivalent model provides us with much information, such as stability and the characteristics of the control system.

  • PDF

Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm (통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측)

  • Jung, Jin Soo;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

A study of hybrid neural network to improve performance of face recognition (얼굴 인식의 성능 향상을 위한 혼합형 신경회로망 연구)

  • Chung, Sung-Boo;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2622-2627
    • /
    • 2010
  • The accuracy of face recognition used unmanned security system is very important and necessary. However, face recognition is a lot of restriction due to the change of distortion of face image, illumination, face size, face expression, round image. We propose a hybrid neural network for improve the performance of the face recognition. The proposed method is consisted of SOM and LVQ. In order to verify usefulness of the proposed method, we make a comparison between eigenface method, hidden Markov model method, multi-layer neural network.

A Hybrid Approach Based on Multi-Criteria Satisfaction Analysis (MUSA) and a Network Data Envelopment Analysis (NDEA) to Evaluate Efficiency of Customer Services in Bank Branches

  • Khalili-Damghani, Kaveh;Taghavi-Fard, Mohammad;Karbaschi, Kiaras
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.347-371
    • /
    • 2015
  • A hybrid procedure based on multi-Criteria Satisfaction Analysis (MUSA) and a Network Data Envelopment Analysis (NDEA) is proposed to evaluate the relative efficiency of customer services in bank branches. First, a three-stage process including sub-processes such as customer expectations, customer satisfaction, and customer loyalty, is defined to model the banking customer services. Then, fulfillment of customer expectations, customer loyalty level, and the customer satisfaction degree are measured and quantified through a multi-dimensional questionnaire based on customers' perceptions analysis and MUSA method, respectively. The customer services scores and the other criteria such as mean of employee evaluation score, operation costs, assets, deposits, loans, number of accounts are considered in network three-stage DEA model. The proposed NDEA model is formed based on multipliers perspective, output-oriented, and constant return to scale assumptions. The proposed NDEA model quantifies and assesses the total efficiency of main process and assigns the efficiency to customer expectations, customer satisfactions, and customer loyalties sub-processes in bank branches. The whole procedure is applied on 30 bank branches in IRAN. The proposed approach can be used in other organizations such as airports, airline agencies, urban transportation systems, railway organizations, chain stores, chain restaurants, public libraries, and entertainment centers.

Traffic Flow Estimation based Channel Assignment for Wireless Mesh Networks

  • Pak, Woo-Guil;Bahk, Sae-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.68-82
    • /
    • 2011
  • Wireless mesh networks (WMNs) provide high-speed backbone networks without any wired cable. Many researchers have tried to increase network throughput by using multi-channel and multi-radio interfaces. A multi-radio multi-channel WMN requires channel assignment algorithm to decide the number of channels needed for each link. Since the channel assignment affects routing and interference directly, it is a critical component for enhancing network performance. However, the optimal channel assignment is known as a NP complete problem. For high performance, most of previous works assign channels in a centralized manner but they are limited in being applied for dynamic network environments. In this paper, we propose a simple flow estimation algorithm and a hybrid channel assignment algorithm. Our flow estimation algorithm obtains aggregated flow rate information between routers by packet sampling, thereby achieving high scalability. Our hybrid channel assignment algorithm initially assigns channels in a centralized manner first, and runs in a distributed manner to adjust channel assignment when notable traffic changes are detected. This approach provides high scalability and high performance compared with existing algorithms, and they are confirmed through extensive performance evaluations.

Secrecy Performance of Multi-Antenna Satellite-Terrestrial Relay Networks with Jamming in the Presence of Spatial Eavesdroppers

  • Wang, Xiaoqi;Hou, Zheng;Zhang, Hanwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3152-3171
    • /
    • 2022
  • This work investigates the physical layer secrecy of a multi-antenna hybrid satellite-terrestrial relay networks (HSTRN) with jamming, in which a satellite aims to make communication with a destination user by means of a relay, along with spatially random eavesdroppers. In order to weaken the signals of eavesdroppers, the conventional relay can also generate intentional interference, besides forwarding the received signal. Shadowed-Rician fading is adopted in satellite link, while Rayleigh fading is adopted in terrestrial link, eavesdropper link and jamming link. The analytical and asymptotic formulas for the system secrecy outage probability (SOP) are characterized. Practical insights on the diversity order of the network are revealed according to the asymptotic behavior of SOP at high signal-to-noise ratio (SNR) regime. Then, analysis of the system throughput is examined to assess the secrecy performance. In the end, numerical simulation results are presented to validate the theoretical analysis and point out: (1) The secrecy performance of the considered network is affected by the channel fading scenario, the system configuration; (2) Decrease of the relay coverage airspace can provide better SOP performance; (3) Jamming from the relay can improve secrecy performance without additional network resources.

OAPR-HOML'1: Optimal automated program repair approach based on hybrid improved grasshopper optimization and opposition learning based artificial neural network

  • MAMATHA, T.;RAMA SUBBA REDDY, B.;BINDU, C SHOBA
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.261-273
    • /
    • 2022
  • Over the last decade, the scientific community has been actively developing technologies for automated software bug fixes called Automated Program Repair (APR). Several APR techniques have recently been proposed to effectively address multiple classroom programming errors. However, little attention has been paid to the advances in effective APR techniques for software bugs that are widely occurring during the software life cycle maintenance phase. To further enhance the concept of software testing and debugging, we recommend an optimized automated software repair approach based on hybrid technology (OAPR-HOML'1). The first contribution of the proposed OAPR-HOML'1 technique is to introduce an improved grasshopper optimization (IGO) algorithm for fault location identification in the given test projects. Then, we illustrate an opposition learning based artificial neural network (OL-ANN) technique to select AST node-level transformation schemas to create the sketches which provide automated program repair for those faulty projects. Finally, the OAPR-HOML'1 is evaluated using Defects4J benchmark and the performance is compared with the modern technologies number of bugs fixed, accuracy, precession, recall and F-measure.

A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets

  • Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.115-129
    • /
    • 2022
  • Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.

Hybrid Behavior Evolution Model Using Rule and Link Descriptors (규칙 구성자와 연결 구성자를 이용한 혼합형 행동 진화 모델)

  • Park, Sa Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.3
    • /
    • pp.67-82
    • /
    • 2006
  • We propose the HBEM(Hybrid Behavior Evolution Model) composed of rule classification and evolutionary neural network using rule descriptor and link descriptor for evolutionary behavior of virtual robots. In our model, two levels of the knowledge of behaviors were represented. In the upper level, the representation was improved using rule and link descriptors together. And then in the lower level, behavior knowledge was represented in form of bit string and learned adapting their chromosomes by the genetic operators. A virtual robot was composed by the learned chromosome which had the best fitness. The composed virtual robot perceives the surrounding situations and they were classifying the pattern through rules and processing the result in neural network and behaving. To evaluate our proposed model, we developed HBES(Hybrid Behavior Evolution System) and adapted the problem of gathering food of the virtual robots. In the results of testing our system, the learning time was fewer than the evolution neural network of the condition which was same. And then, to evaluate the effect improving the fitness by the rules we respectively measured the fitness adapted or not about the chromosomes where the learning was completed. In the results of evaluating, if the rules were not adapted the fitness was lowered. It showed that our proposed model was better in the learning performance and more regular than the evolutionary neural network in the behavior evolution of the virtual robots.

  • PDF