• 제목/요약/키워드: hybrid iterative schemes

검색결과 9건 처리시간 0.022초

FIXED POINT THEOREMS IN COMPLEX VALUED CONVEX METRIC SPACES

  • Okeke, G.A.;Khan, S.H.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.117-135
    • /
    • 2021
  • Our purpose in this paper is to introduce the concept of complex valued convex metric spaces and introduce an analogue of the Picard-Ishikawa hybrid iterative scheme, recently proposed by Okeke [24] in this new setting. We approximate (common) fixed points of certain contractive conditions through these two new concepts and obtain several corollaries. We prove that the Picard-Ishikawa hybrid iterative scheme [24] converges faster than all of Mann, Ishikawa and Noor [23] iterative schemes in complex valued convex metric spaces. Also, we give some numerical examples to validate our results.

A HYBRID ITERATIVE METHOD OF SOLUTION FOR MIXED EQUILIBRIUM AND OPTIMIZATION PROBLEMS

  • Zhang, Lijuan;Chen, Jun-Min
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.25-38
    • /
    • 2010
  • In this paper, we introduce a hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of common mixed points of finitely many nonexpansive mappings and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. We show that the iterative sequences converge strongly to a common element of the three sets. The results extended and improved the corresponding results of L.-C.Ceng and J.-C.Yao.

STRONG CONVERGENCE OF HYBRID ITERATIVE SCHEMES WITH ERRORS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

  • Kim, Seung-Hyun;Kang, Mee-Kwang
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제25권2호
    • /
    • pp.149-160
    • /
    • 2018
  • In this paper, we prove a strong convergence result under an iterative scheme for N finite asymptotically $k_i-strictly$ pseudo-contractive mappings and a firmly nonexpansive mappings $S_r$. Then, we modify this algorithm to obtain a strong convergence result by hybrid methods. Our results extend and unify the corresponding ones in [1, 2, 3, 8]. In particular, some necessary and sufficient conditions for strong convergence under Algorithm 1.1 are obtained.

WEAK AND STRONG CONVERGENCE THEOREMS FOR THE MODIFIED ISHIKAWA ITERATION FOR TWO HYBRID MULTIVALUED MAPPINGS IN HILBERT SPACES

  • Cholamjiak, Watcharaporn;Chutibutr, Natchaphan;Weerakham, Siwanat
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.767-786
    • /
    • 2018
  • In this paper, we introduce new iterative schemes by using the modified Ishikawa iteration for two hybrid multivalued mappings in a Hilbert space. We then obtain weak convergence theorem under suitable conditions. We use CQ and shrinking projection methods with Ishikawa iteration for obtaining strong convergence theorems. Furthermore, we give examples and numerical results for supporting our main results.

Error-detection-coding-aided iterative hard decision interference cancellation for MIMO systems with HARQ

  • Park, Sangjoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1016-1030
    • /
    • 2018
  • In this paper, an error-detection-coding-aided iterative hard decision interference cancellation (EDC-IHIC) scheme for multiple-input multiple-output systems employing hybrid automatic repeat request (HARQ) for multi-packet transmission is developed and investigated. In the EDC-IHIC scheme, only packets identified as error-free by the EDC are submitted to the interference cancellation (IC) stage for cancellation from the received signals. Therefore, the possibility of error propagation, including inter-transmission error propagation, can be eliminated using EDC-IHIC. Because EDC must be implemented in systems that employ HARQ to determine packet retransmission, error propagation can be prevented without the need for additional redundancy. The results of simulations conducted herein verify that the EDC-IHIC scheme outperforms conventional hard decision IC schemes in terms of the packet error rate in various environments.

Hybrid combiner design for downlink massive MIMO systems

  • Seo, Bangwon
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.333-340
    • /
    • 2020
  • We consider a hybrid combiner design for downlink massive multiple-input multiple-output systems when there is residual inter-user interference and each user is equipped with a limited number of radio frequency (RF) chains (less than the number of receive antennas). We propose a hybrid combiner that minimizes the mean-squared error (MSE) between the information symbols and the ones estimated with a constant amplitude constraint on the RF combiner. In the proposed scheme, an iterative alternating optimization method is utilized. At each iteration, one of the analog RF and digital baseband combining matrices is updated to minimize the MSE by fixing the other matrix without considering the constant amplitude constraint. Then, the other matrix is updated by changing the roles of the two matrices. Each element in the RF combining matrix is obtained from the phase component of the solution matrix of the optimization problem for the RF combining matrix. Simulation results show that the proposed scheme performs better than conventional matrix-decomposition schemes.

STRONG CONVERGENCE THEOREMS FOR GENERALIZED VARIATIONAL INEQUALITIES AND RELATIVELY WEAK NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • 제28권3호
    • /
    • pp.265-280
    • /
    • 2012
  • In this paper, we introduce an iterative sequence by using a hybrid generalized $f$-projection algorithm for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping an the set of solutions of a generalized variational inequality in a Banach space. Our results extend and improve the recent ones announced by Y. Liu [Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings, J. Glob. Optim. 46 (2010), 319-329], J. Fan, X. Liu and J. Li [Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces, Nonlinear Analysis 70 (2009), 3997-4007], and many others.

Increasing Secrecy Capacity via Joint Design of Cooperative Beamforming and Jamming

  • Guan, Xinrong;Cai, Yueming;Yang, Weiwei;Cheng, Yunpeng;Hu, Junquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.1041-1062
    • /
    • 2012
  • In this paper, we propose a hybrid cooperative scheme to improve the secrecy rate for a cooperative network in presence of multiple relays. Each relay node transmits the mixed signal consisting of weighted source signal and intentional noise. The problem of power allocation, the joint design of beamforming and jamming weights are investigated, and an iterative scheme is proposed. It is demonstrated by the numerical results that the proposed hybrid scheme further improves secrecy rate, as compared to traditional cooperative schemes.

The Softest handoff Design using iterative decoding (Turbo Coding)

  • Yi, Byung-K.;Kim, Sang-G.;Picknoltz, Raymond-L.
    • Journal of Communications and Networks
    • /
    • 제2권1호
    • /
    • pp.76-84
    • /
    • 2000
  • Communication systems, including cell-based mobile communication systems, multiple satellite communication systems of multi-beam satellite systems, require reliable handoff methods between cell-to-cell, satellite-to-satellite of beam-to-team, respectively. Recent measurement of a CDMA cellular system indicates that the system is in handoff at about 35% to 70% of an average call period. Therefore, system reliability during handoff is one of the major system performance parameters and eventually becomes a factor in the overall system capacity. This paper presents novel and improved techniques for handoff in cellular communications, multi-beam and multi-satellite systems that require handoff during a session. this new handoff system combines the soft handoff mechanism currently implemented in the IS-95 CDMA with code and packet diversity combining techniques and an iterative decoding algorithm (Turbo Coding). the Turbo code introduced by Berrou et all. has been demonstrated its remarkable performance achieving the near Shannon channel capacity [1]. Recently. Turbo codes have been adapted as the coding scheme for the data transmission of the third generation international cellular communication standards : UTRA and CDMA 2000. Our proposed encoder and decoder schemes modified from the original Turbo code is suitable for the code and packet diversity combining techniques. this proposed system provides not only an unprecedented coding gain from the Turbo code and it iterative decoding, but also gain induced by the code and packet diversity combining technique which is similar to the hybrid Type II ARQ. We demonstrate performance improvements in AWGN channel and Rayleigh fading channel with perfect channel state information (CSI) through simulations for at low signal to noise ratio and analysis using exact upper bounding techniques for medium to high signal to noise ratio.

  • PDF