• Title/Summary/Keyword: hybrid functional

Search Result 363, Processing Time 0.025 seconds

Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin

  • Kang, Dong-Jun;Han, Dong-Hee;Kang, Young-Taec;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.422-422
    • /
    • 2009
  • Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the solgel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm, and they were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with aeryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure. The fabricated hybrid films exhibit an excellent optical transmission of above 90% in the visible region as well as an enhanced surface smoothness of around 1 nm RMS roughness. In addition, the hybrid films exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. More importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

  • PDF

Design and Synthesis of Multi Functional Noble Metal Based Ternary Nitride Thin Film Resistors

  • Kwack, Won-Sub;Choi, Hyun-Jin;Lee, Woo-Jae;Jang, Seung-Il;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.93-93
    • /
    • 2013
  • In recent years, multifunctional ternary nitride thin films have received extenstive attention due to its versatility in many applications. In particular, noble metal based ternary nitride thin films showed a promising properties in the application of Multifunctional heating resistor films because its good electrical properties and excellent resistance against oxidation and corrosion. In this study, we prepared multifunctional noble metal based ternary nitride thin films by atomic layer deposition (ALD) and plasma-enhanced ALD (PEALD) method. ALD and PEALD techniques were used due to their inherent merits such as a precise composition control and large area uniformity, which is very attractive for preparing multicomponent thin films on large area substrate. Here, we will demonstrate the design concept of multifunctional noble metal based ternary thin films. And, the relationship between microstructural evolution and electrical resistivity in noble metal based ternary thin films will be systemically presented. The useful properties of noble metal based ternary thin films including anti-corrosion and anti-oxidation will be discussed in terms of hybrid functionality.

  • PDF

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.

Hybrid Rubber Mount by Using Magnetic Force (자력을 이용한 하이브리드 고무 마운트)

  • Ahn, Young Kong;Kim, Dong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.236-246
    • /
    • 2014
  • This paper presents a hybrid rubber mount with magnet to isolate effectively the vibration in vehicle, forklift, and so on. The hybrid mount does not have any controller of the magnetic force. Dynamic stiffness of the mount is reduced by only magnetic suction according to the applied magnetic field and damping coefficient increased. Performance of conventional rubber mount with using electromagnet has been investigated by MTS Tester. The governing equation of the hybrid mount was derived and verified by comparison with experimental and theoretical results. The equation can be used practically and usefully in the design of the mount and analysis of the mounting system. The hybrid mount provides excellent performance in vibration isolation and its structure is very simpler than active with controller and a semi-active mount with a functional fluid. Furthermore, production cost of the mount using permanent magnets is very lower than that of the active mount with electromagnets. Therefore, commercial potential of the mount is very high.

Novel Synthesis of bis Acetylated Hybrid Pyrazoles as Potent Anticandidiasis Agents (항칸다디아 활성이 우수한 bis acetylated hybrid pyrazoles의 합성 연구)

  • Kanagarajan, V.;Ezhilarasi, M. R.;Gopalakrishnan, M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.256-261
    • /
    • 2011
  • A new series of bis acetylated hybrid pyrazoles were synthesized and characterized by their melting point, elemental analysis, MS, FT-IR, one-dimensional $^1H$, and $^{13}C$ NMR spectroscopic data. All the synthesized compounds were tested for their in vitro antifungal activities against Candida sp. namely Candida albicans, Candida glabrata, Candida parapsilosis, Candida dubliniensis and Candida tropicalis. A close inspection of the in vitro anticandidal activity profile in differently electron donating ($CH_3$ and $OCH_3$) and electron withdrawing (-F, -Cl, and Br) functional group substituted phenyl rings of novel hybrid pyrazoles exerted strong anticandidal activity against all the tested Candida species.

Development of Hybrid RP System and Fabrication of Nano Composite parts (하이브리드 쾌속 조형 시스템의 개발 및 나노 복합재 부품 제작)

  • Kim S.G.;Jung W.K.;Chu W.S.;Kim H.J.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.220-223
    • /
    • 2005
  • The rapid prototyping (RP) technology has been advanced for various applications such as verification of design, functional test. However, many RP machines still have low accuracy and limitation of applications for various materials. In this research, a hybrid RP system was developed to improve precision of micro parts. This hybrid system consists of deposition and material removal process by mechanical micro machining to fabricate nano composites using photo-curable polymer resin with various nano particles. In this work, using hybrid RP process with Multi-Walled Carbon Nano Tube (MWCNT) and hydroxyapatite, micro parts were fabricated. The precision of parts was evaluated based on the original CAD design, and to see the effect of nano particles on mechanical properties, tensile strength was measured. From the results of experiments, it was confirmed that the part made by hybrid process had higher precision, and the addition of nano particles improved mechanical properties.

  • PDF

Fabrication of Micro-/Nano- Hybrid 3D Stacked Patterns (나노-마이크로 하이브리드 3차원 적층 패턴의 제조)

  • Park, Tae Wan;Jung, Hyunsung;Bang, Jiwon;Park, Woon Ik
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.387-392
    • /
    • 2018
  • Nanopatterning is one of the essential nanotechnologies to fabricate electronic and energy nanodevices. Therefore, many research group members made a lot of efforts to develop simple and useful nanopatterning methods to obtain highly ordered nanostructures with functionality. In this study, in order to achieve pattern formation of three-dimensional (3D) hierarchical nanostructures, we introduce a simple and useful patterning method (nano-transfer printing (n-TP) process) consisting of various linewidths for diverse materials. Pt and $WO_3$ hybrid line structures were successfully stacked on a flexible polyimide substrate as a multi-layered hybrid 3D pattern of Pt/WO3/Pt with line-widths of $1{\mu}m$, $1{\mu}m$ and 250 nm, respectively. This simple approach suggests how to fabricate multiscale hybrid nanostructures composed of multiple materials. In addition, functional hybrid nanostructures can be expected to be applicable to various next-generation electronic devices, such as nonvolatile memories and energy harvesters.

Electrical and thermal properties of polyamideimide-colloid silica nanohybrid for magnetic enameled wire

  • Han, S.W.;Kang, D.P.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.428-432
    • /
    • 2012
  • Polyamidimide (PAI)-colloidal silica (CS) nanohybrid films were synthesized by an advanced sol-gel process. The synthesized PAI-CS hybrid films have a uniform and stable chemical bonding and there is no interfacial defects observed by TEM. The thermal degradation ratio of PAI-CS (10 wt%) hybrid films is delayed by 100 ℃ compared with pure PAI sample determined by on set temperature range in TGA. The dielectric constant of PAI-CS (10 wt%) hybrid films decreases with increasing CS content up to about 5 wt% but increases at higher CS content, which is not explained simply by effective medium therories (EMT). The duration time of PAI-CS (10 wt%) hybrid coil is 38 sec, which is very longer than that of pure PAI coil sample. The PAI-CS (10 wt%) hybrid film has a higher breakdown voltage resistance than the pure PAI film at surge environment and exhibits superior heat resistance. The PAI-CS (10 wt%) sample shows the advanced and stable thermal emission properties in transformer module compared with the pure PAI sample. This result illustrates that the advanced thermal conductivity and expansion properties of PAI-CS sample in the case of appropriate sol-gel processes brings the stable thermal emission in transformer system. Therefore, new PAI-CS hybrid samples with such stable thermal emission properties are expected to be used as a high functional coating application in ET, IT and electric power products.

Determination of Atomic Structures and Relative Stabilities of Diadduct Regioisomers of C20X2 (X = H, F, Cl, Br, and OH) by the Hybrid Density-Functional B3LYP Method

  • Lee, Seol;Suh, Young-Sun;Hwang, Yong-Gyoo;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3372-3376
    • /
    • 2011
  • We have studied the relative stability and atomic structures of five $C_{20}X_2$ regioisomers obtained as diadducts of a $C_{20}$ cage (X = H, F, Cl, Br, and OH). All the regioisomers are geometric isomers, i.e., they differ in their spatial arrangement. Full-geometry optimizations of the regioisomers have been performed using the hybrid density-functional (B3LYP/6-31G(d, p)) method. Our results suggest that the cis-1 regioisomer (the 1,2-diadduct) is the most stable and that the second most stable is the trans-2 (1,13-diadduct) regioisomer, implying that the long-range interaction between the two adducts and the resonance effect are more pronounced than the diadduct-induced strain in the $C_{20}$ cage. The HOMO and LUMO characteristics of each regioisomer with the same symmetry of structural regioisomers except $C_{20}(OH)_2$ are topologically same. This suggests that by using an entirely different set of characteristic chemical reactions for each regioisomer, we can distinguish between the five regioisomers for each $C_{20}$ diadduct derivative.

The Expressive Characteristics of the Posthuman Body in Fashion Illustration (패션 일러스트레이션에 반영된 포스트휴먼의 신체 표현특징)

  • Choi, Jung-Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.9
    • /
    • pp.1085-1098
    • /
    • 2011
  • In the $21^{st}$ century, technology is a tool for the expansion of the five senses and physical ability that works as an element for posthuman identity. This study analyzes and theorizes on the characteristics of the posthuman body in fashion illustration. The method of this study analyzes documentaries about posthuman and fashion illustration. The results are as follow. Posthuman body types are classed as hybrid body, plastic surgery body, and digital body. The characteristics of the posthuman body are categorized as ultra- functional prosthetic, mythical undifferentiated, radical plastic surgery type and post-physical digitization type. The ultra-functional prosthetic type shows a restored body and upgraded functional body through a machine hybrid, cyborg suit and mannequin hybrid. It is a break from classical gender identity to form a nerve sense extension that displays physical and abstract power. The mythical undifferentiated type shows a therianthropic form, parts of an animal body, radical skin and gender bending. It represents the return to an undifferentiated world, the desire of a powerful being and the possibility of radical transformation. The radical plastic surgery type shows a photomontage of an ideal body, transgendered body, grotesque body marking, absence of partial or overall face organ and the expansion of abnormal body organs. It represents the expression of narcissism, unconscious desire, fantasy, fear and suggests an alternative ideality, sexual attachment and ambiguous gender identity. The post-physical digitization type shows an imperfect form or duplicated ego image through the omission of the body silhouette or detailed form, fragmented image using net, representative self like optical illusion using typography, an imperfect vague silhouette and immaterial body outline through the use of virtual light. It represents the lack of desire, narcissism, fluidity in a virtual space, the continued creation of a new self, ambiguous gender identity and the liberation of environment, sex, and race. Likewise, the posthuman in fashion illustration shows the absence of a species boundary, destruction of classical gender identity, a new personality and virtual self image.