• Title/Summary/Keyword: hybrid functional

Search Result 363, Processing Time 0.024 seconds

Motility Analysis of Gate Myocardium SPECT Image Using Left Ventricle Myocardium Model (좌심실 심근 모델을 이용한 게이트 심근 SPECT 영상의 운동성 분석)

  • 손병환;김재영;이병일;이동수;최흥국
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.444-454
    • /
    • 2003
  • An analysis of heart movement is to estimate a role which supplies blood in human body. We have constructed a left ventricle myocardium model and mathematically evaluated the motion of myocardium. The myocardial motility was visualized using some parameters about cardiac motion. We applied the myocardium model in the gated myocardium SPECT image that showed a cardiac biochemical reaction, and analyzed a motility between the gated myocardium SPECT image and the myocardium model. The myocardium model was created of the based on three dimensional super-ellipsoidal model that was using the sinusoidal function. To express a similar form and motion of the left ventricle myocardium, we calculated parameter functions that gave the changing of motion and form. The LSF algorithm was applied to the myocardium gated SPECT image data and the myocardium model, and finally created a fitting model. Then we analyzed a regional motility direction and size of the gated myocardium SPECT image that was constructed on a fitting model. Furthermore, we implemented the Bull's Eye map that had evaluated the heart function for presentation of regional motility. Using myocardium's motion the evaluation of cardiac function of SPECT was estimated by a contraction ability, perfusion etc. However, it is not any estimation about motility. So, We analyzed the myocardium SPECT's motility of utilizing the myocardium model. We expect that the proposed algorithm should be a useful guideline in the heart functional estimation.

  • PDF

Synthesis and characterization of hydrophobic and hydrophilic cellulose derivative by esterification (친수성과 소수성을 동시에 가지는 아세틸화 셀룰로스 에테르의 합성 및 특성 평가)

  • Kim, Taehong;Lee, Sangku;Son, Byunghee;Paik, Hyun-Jjong;Yoon, Sanghyeon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • Acetylated Cellulose Ether (ACE), cellulose-based amphiphilic polymer with hydrophilic and hydrophobic, was synthesized and investigated in terms of its solubility and wettability for organic solvents and water. Acetyl group was substituted to the cellulose ether in a hydrophilic polymer by esterification. As a result of FT-IR, the peak corresponding to the hydroxyl group decreased and carboxyl acid peak increased with increasing reaction time and temperature, which signified the increase in the degree of acetylation of the ACE. There were similar thermal decomposition behaviors before and after esterification reaction until $800^{\circ}C$ so that the reaction occurred without significant structural changes of cellulose backbones. The solubility parameter of the ACE had a range of 18.5~26.4, and its viscosity and turbidity were controlled according to the solubility parameter of organic solvents. The ACE showed the hydrophilicity because the contact angle of the ACE was higher than the cellulose ether. These results confirmed that the ACE had the hydrophobicity and hydrophilicity due to the ether which was glucosidic bonding between the glucose units and un-reacted hydroxyl functional groups in the ACE.

Synthesis and evaluation of PDLs22 recombinant protein (PDLs22 재조합 단백질의 합성과 평가)

  • Lee, Kyoung Yeon;Choi, Yong-Seok;Lee, You-Jin;Bae, Hyun-Sook;Kim, Heung-Jeong;Cho, Kwang-Hee;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • Periodontal ligament (PDL) is the connective tissue located between the tooth root and alveolar bone. In a previous study, PDLs22 was isolated as a PDL-specific gene by using subtractive hybrid-ization between cultured PDL fibroblasts and gingival fibroblasts. It was also suggested that PDLs22 plays important roles in the development, differentiation and maintenance of periodontal tissues. However, little is known about functional study of PDLs22 using recombinant protein in PDL fibroblast differentiation and periodontium formation. In this study, in order to produce the PDLs22 recombinat protein, PDLs22 expression vector were constructed and expressed its protein in various host cell and temperature conditions. The results were as follows: 1. PDLs22 protein was not strongly expressed In the induction system using pRSET-PDLs22 construct. 2. When the BL21(DE3) pLysS was used as a expression host, PDLS22 protein was strongly ex-pressed in the induction system using pHCEIIBNd-PDLs22 construct. 3. The PDLs22 protein was recognized at a molecular weight of 28 kDa in western blots. 4. Almost of the expressed PDLs22 protein was not soluble and observed like as inclusion body. 5. The protein solubility was not improved after modification of induction time and temperature during PDLs22 protein production. In this study, the system for the PDLs22 protein production was connstructed. However, the re-results suggest that further studies will be needed to produce the considerable amount of PDLs22 re-combinat protein, which can use for the periodontal regeneration.

Evaluation of an Effective Load Transfer System Applied to a Simple Model of a Wall Frame Structural System (단순 모델을 사용한 추상복합 건물의 효율적인 전이 시스템에 관한 연구)

  • 정영일;윤석한;홍원기;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.23-29
    • /
    • 2002
  • A wall-frame type structural system has been widely used to make full use of a limited land in large cities to satisfy the several functional requirement in one building. However, this type of hybrid structure brought some problems due to the vertical discontinuity of a structural system. The response of a wall-frame type structural system having a deep transfer girder was observed. An arch system was introduced to replace the deep transfer girder. The adequacy of an arch system was observed for the various boundary conditions of a system. The proposed system was compared to a general transfer girder system by applying both gravity load and lateral load. It was observed that an arch system fairly distributes the stress without concentrating stress at a certain location of a system differently from the current transfer girder system. The moment decrement effect of a column can also be obtained by eliminating the large mass of a transfer girder. Also it was investigated that an arch system is more economical and effective than the current transfer girder system.

PRIP, a Novel Ins(1,4,5)P3 Binding Protein, Functional Significance in Ca2+ Signaling and Extension to Neuroscience and Beyond

  • Kanematsu, Takashi;Takeuchi, Hiroshi;Terunuma, Miho;Hirata, Masato
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2005
  • Investigation of chemically synthesized inositol 1,4,5-trisphosphate [$Ins(1,4,5)P_3$] analogs has led to the isolation of a novel binding protein with a molecular size of 130 kDa, characterized as a molecule with similar domain organization to phospholipase C-${\delta}1$ (PLC-${\delta}1$) but lacking the enzymatic activity. An isoform of the molecule was subsequently identified, and these molecules have been named PRIP (PLC-related, but catalytically inactive protein), with the two isoforms named PRIP-1 and -2. Regarding its ability to bind $Ins(1,4,5)P_3$ via the pleckstrin homology domain, the involvement of PRIP-1 in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling was examined using COS-1 cells overexpressing PRIP-1 and cultured neurons prepared from PRIP-1 knock-out mice. Yeast two hybrid screening of a brain cDNA library using a unique N-terminus as bait identified GABARAP ($GABA_A$ receptor associated protein) and PP1 (protein phosphatase 1), which led us to examine the possible involvement of PRIP in $GABA_A$ receptor signaling. For this purpose PRIP knock-out mice were analyzed for $GABA_A$ receptor function in relation to the action of benzodiazepines from the electrophysiological and behavioral aspects. During the course of these experiments we found that PRIP also binds to the b-subunit of $GABA_A$ receptors and PP2A (protein phosphtase 2A). Here, we summarize how PRIP is involved in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling and $GABA_A$ receptor signaling based on the characteristics of binding molecules.

Expression of mue Gene on Plasmid pKM101 and pSL4 (플라스미드 pKM101 과 pSL4 의 muc 유전자의 발현에 관한 연구)

  • 전홍기;황유경;이상률;백형석
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.371-376
    • /
    • 1992
  • Plasmid pSL4 of plasmid pKM 101 mutant have high protection effects and mutagenecity for UV and methyl methanesulfonate, The mucA gene and a pan of mucE gene of pKM 101 and pSL4 were sucloned onto lacZ' fusion vector pMC874 and the hybrid plasmids pBH31 and pBH30 were selected. These plsmids were intrduced into $recA^{+}lexA^{-}$, $recA^{-}와lexA^{+}$ strains and determined the activity of $\beta$-galactosidase for UV. In $recA^{+}lexA^{+}$ strain.$\beta$-galactosidase activity of pBH30 included mue region of pSL4 was higher thall pBH31 inclued muc region of pKM 10 I and the tf-galactosidase of two plasmids was not induced in reeA and leeA mutants with or without UV illumination. Without UV illumination. the .$\beta$-galactosidasc of pBH30 was expressed a little higher level than that of pBH3L We suggest that the functional difference of pKM 10l and pSL4 are due to the variety of mue regulatory region. Also. a plasmid pBH 100 earring umuC' -lacZ' gene fusion was constructed in vitro to study the regulation of the umu operon. It was shown that the umu operon is induced by UV and is regulated by the reeA and lexA genes.

  • PDF

Lamellar-bio nano-hybrid; The Study for Stability of Catechin (Green Tea: EGCG) Using 3-Dimensional Liposome (라멜라-바이오 나노하이브리드: 3 Dimension-liposome을 이용한 카테킨(EGCG)에 안정화에 대한 연구)

  • Hong Geun, Ji;Jung Sik, Choi;Hee Suk, Kwon;Sung Rack, Cho;Byoung Kee, Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • In these several years, as many people have been attracted by the functional cosmetics, there are a lot of study to enhance the stability of active ingredients for light, heat, oxygen, etc. in the academic and industrial field. Especially, catechin is well known as strong anti-oxidant, anti-inflammatory and reducing agent for oxidative stress but it is very unstable for light, heat, oxygen. etc. In this study, the stability and skin penetration of catechin are improved by 3-dimensional method. As I-dimension, porous silica is prepared using sol-gel method, and then catechin is adsorbed in pores of silica. As 2-dimension, solid lipid nanoparticles (SLN) are obtained using non-phospholipid vesicles. Finally 3-dimension is completion through lamellar phase self-organization that combines SLN catechin with skin lipid matrix. We used laser light scattering system, cyro-SEM, chromameter, HPLC and image analyzer to analyze our 3-dimentional systems. According to chromameter date, the color stability of 3-dimensional catechin is enhanced by 5-10 times compared with general liposome systems. We also confirmed through HPLC analysis that 3-dimensional catechin is more long lasting. The effect of skin penetration and wrinkle reduction are improved, too.

Characterization of a Novel DWD Protein that Participates in Heat Stress Response in Arabidopsis

  • Kim, Soon-Hee;Lee, Joon-Hyun;Seo, Kyoung-In;Ryu, Boyeong;Sung, Yongju;Chung, Taijoon;Deng, Xing Wang;Lee, Jae-Hoon
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.833-840
    • /
    • 2014
  • Cullin4-RING ubiquitin ligase (CRL4) is a family of multi-subunit E3 ligases. To investigate the possible involvement of CRL4 in heat stress response, we screened T-DNA insertion mutants of putative CRL4 substrate receptors that exhibited altered patterns in response to heat stress. One of the mutants exhibited heat stress tolerance and was named heat stress tolerant DWD1 (htd1). Introduction of HTD1 gene into htd1-1 led to recovery of heat sensitivity to the wild type level, confirming that the decrease of HTD1 transcripts resulted in heat tolerance. Therefore, HTD1 plays a negative role in thermotolerance in Arabidopsis. Additionally, HTD1 directly interacted with DDB1a in yeast two-hybrid assays and associated with DDB1b in vivo, supporting that it could be a part of a CRL4 complex. Various heat-inducible genes such as HSP14.7, HSP21, At2g03020 and WRKY28 were hyper-induced in htd1-1, indicating that HTD1 could function as a negative regulator for the expression of such genes and that these genes might contribute to thermotolerance of htd1-1, at least in part. HTD1 was associated with HSP90-1, a crucial regulator of thermotolerance, in vivo, even though the decrease of HTD1 did not affect the accumulation pattern of HSP90-1 in Arabidopsis. These findings indicate that a negative role of HTD1 in thermotolerance might be achieved through its association with HSP90-1, possibly by disturbing the action of HSP90-1, not by the degradation of HSP90-1. This study will serve as an important step toward understanding of the functional connection between CRL4-mediated processes and plant heat stress signaling.

Arabidopsis MAP3K16 and Other Salt-Inducible MAP3Ks Regulate ABA Response Redundantly

  • Choi, Seo-wha;Lee, Seul-bee;Na, Yeon-ju;Jeung, Sun-geum;Kim, Soo Young
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.230-242
    • /
    • 2017
  • In the Arabidopsis genome, approximately 80 MAP3Ks (mitogen-activated protein kinase kinase kinases) have been identified. However, only a few of them have been characterized, and the functions of most MAP3Ks are largely unknown. In this paper, we report the function of MAP3K16 and several other MAP3Ks, MAP3K14/15/17/18, whose expression is salt-inducible. We prepared MAP3K16 overexpression (OX) lines and analyzed their phenotypes. The result showed that the transgenic plants were ABA-insensitive during seed germination and cotyledon greening stage but their root growth was ABA-hypersensitive. The OX lines were more susceptible to water-deficit condition at later growth stage in soil. A MAP3K16 knockout (KO) line, on the other hand, exhibited opposite phenotypes. In similar transgenic analyses, we found that MAP3K14/15/17/18 OX and KO lines displayed similar phenotypes to those of MA3K16, suggesting the functional redundancy among them. MAP3K16 possesses in vitro kinase activity, and we carried out two-hybrid analyses to identify MAP3K16 substrates. Our results indicate that MAP3K16 interacts with MKK3 and the negative regulator of ABA response, ABR1, in yeast. Furthermore, MAP3K16 recombinant protein could phosphorylate MKK3 and ABR1, suggesting that they might be MAP3K16 substrates. Collectively, our results demonstrate that MAP3K16 and MAP3K14/15/17/18 are involved in ABA response, playing negative or positive roles depending on developmental stage and that MAP3K16 may function via MKK3 and ABR1.

Controlling the Location of Thermally Stable Au Nanoparticles with Tailored Surface Property within Block Copolymer Templates (열적으로 안정한 금나노입자를 이용한 블록공중합체 내에서의 입자위치 조절)

  • Kim, Se-Yong;Yoo, Mi-Sang;Jung, Se-Ra;Paek, Kwan-Yeul;Kim, Bum-Joon J.;Bang, Joona
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.238-243
    • /
    • 2011
  • Organic/inorganic hybrid materials have a lot of interest in various areas due to their fascinating properties. To control the location and dispersion of inorganic nanoparticles within polymer matrix. thiol-terminated polymeric ligands have been widely used to tune the surface property of nanoparticles. However, the specific binding between the thiol functional group and metal is unstable with increasing temperature. To archive the thermally-stable Au nanoparticles, we previously synthesized various UV-crosslinkable polymeric ligands, which have different compositions of polar, UV-crosslinkable azide unit comparing to non-polar 스티렌 units. After crosslinking the Au nanoparticles, it was found that the nanoparticles had superb stability at high temperature (above $180^{\circ}C$). In this work, we used thermally-stable Au nanoparticles to control the location within the polymer matrix. By changing the amount of polar azide units in the polymeric ligands, we could precisely control the location of nanoparticles from one domain to the interface of block copolymer templates.