• 제목/요약/키워드: hybrid full form

검색결과 8건 처리시간 0.024초

Experimental Evaluation for Hydrodynamic Performance of a Hybrid Supported Type Fast Craft

  • Yang, S.I.;Koh, C.D.;Ahn, J.W.;Kim, Y.G.;Lee, J.-T.
    • Journal of Ship and Ocean Technology
    • /
    • 제4권4호
    • /
    • pp.34-44
    • /
    • 2000
  • This paper deals with the sea trial results of a fast craft with the hybrid supported type hul form. waterjet propulsion system and motion control system. The hybrid-type container ship operable in the sea with a wave height of y6 m, a speed of 50 knots and a payload of 1,500 tons were designed. A 1/8 scale 10 m- long test craft was constructed and tested in open seas. The hydrodynamic performance such as speed, turning, motion control in waves and waterjet thrush was analyzed.

  • PDF

THE VALUATION OF VARIANCE SWAPS UNDER STOCHASTIC VOLATILITY, STOCHASTIC INTEREST RATE AND FULL CORRELATION STRUCTURE

  • Cao, Jiling;Roslan, Teh Raihana Nazirah;Zhang, Wenjun
    • 대한수학회지
    • /
    • 제57권5호
    • /
    • pp.1167-1186
    • /
    • 2020
  • This paper considers the case of pricing discretely-sampled variance swaps under the class of equity-interest rate hybridization. Our modeling framework consists of the equity which follows the dynamics of the Heston stochastic volatility model, and the stochastic interest rate is driven by the Cox-Ingersoll-Ross (CIR) process with full correlation structure imposed among the state variables. This full correlation structure possesses the limitation to have fully analytical pricing formula for hybrid models of variance swaps, due to the non-affinity property embedded in the model itself. We address this issue by obtaining an efficient semi-closed form pricing formula of variance swaps for an approximation of the hybrid model via the derivation of characteristic functions. Subsequently, we implement numerical experiments to evaluate the accuracy of our pricing formula. Our findings confirm that the impact of the correlation between the underlying and the interest rate is significant for pricing discretely-sampled variance swaps.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가 (Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials)

  • 안해영;이윤경;송지현
    • 실내환경 및 냄새 학회지
    • /
    • 제17권4호
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

An Area Optimization Method for Digital Filter Design

  • Yoon, Sang-Hun;Chong, Jong-Wha;Lin, Chi-Ho
    • ETRI Journal
    • /
    • 제26권6호
    • /
    • pp.545-554
    • /
    • 2004
  • In this paper, we propose an efficient design method for area optimization in a digital filter. The conventional methods to reduce the number of adders in a filter have the problem of a long critical path delay caused by the deep logic depth of the filter due to adder sharing. Furthermore, there is such a disadvantage that they use the transposed direct form (TDF) filter which needs more registers than those of the direct form (DF) filter. In this paper, we present a hybrid structure of a TDF and DF based on the flattened coefficients method so that it can reduce the number of flip-flops and full-adders without additional critical path delay. We also propose a resource sharing method and sharing-pattern searching algorithm to reduce the number of adders without deepening the logic depth. Simulation results show that the proposed structure can save the number of adders and registers by 22 and 26%, respectively, compared to the best one used in the past.

  • PDF

하악 무치악 환자에서 임플란트 하이브리드 보철물을 이용한 전악 수복 증례 (Full mouth rehabilitation of mandibular edentulous patient using implant hybrid prosthesis)

  • 김성빈;김성회;박영범;문홍석
    • 대한치과보철학회지
    • /
    • 제51권3호
    • /
    • pp.214-220
    • /
    • 2013
  • 무치악 환자의 임플란트 보철 치료는 지지, 유지, 안정성, 발음 등의 측면에서 더 우수한 결과를 보인다. 임플란트를 이용한 무치악 환자의 치료는 다양하며, 크게 가철성과 고정성으로 나눌 수 있다. 가철성 치료에는 임플란트 유지 및 지지 피개의치가 있으며, 고정성 보철치료에는 ceramo-metal 보철물과 임플란트 하이브리드 보철물(implant hybrid prosthesis)이있다. 치료계획의 수립은 잔존 치조제, 연조직, 악간 관계, 환자의 경제적 상황 등을 종합적으로 고려하여 수립해야 한다. 임플란트를 이용한 하이브리드 보철물은 고정성 치료를 통해 환자에게 적절한 교합력을 제공하고 심리적인 안정감을 주는 동시에 적절한 연조직의 회복을 통한 심미적인 결과를 얻을 수 있다. 본 증례는 73세 여환으로 상악 Kennedy Class I 부분 무치악과 하악 무치악 상태로 내원하였다. 상악에는 우측 견치부터 좌측 제1소구치까지 7개의 잔존치를 이용한 가철성 국소의치, 하악은 양측 측절치와 제1소구치 부위에 4개의 임플란트 고정체를 이용한 하이브리드 보철물로 최종 치료 진행하였으며 치료 후 기능적, 심미적으로 만족스러운 결과를 얻었기에 이를 보고하고자 한다.

Molecular Cloning, Phylogenetic Analysis, Expressional Profiling and In Vitro Studies of TINY2 from Arabidopsis thaliana

  • Wei, Gang;Pan, Yi;Lei, Juan;Zhu, Yu-Xian
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.440-446
    • /
    • 2005
  • A cDNA that was rapidly induced upon abscisic acid, cold, drought, mechanical wounding and to a lesser extent, by high salinity treatment, was isolated from Arabidopsis seedlings. It was classified as DREB subfamily member based on multiple sequence alignment and phylogenetic characterization. Since it encoded a protein with a typical ERF/AP2 DNA-binding domain and was closely related to the TINY gene, we named it TINY2. Gel retardation assay revealed that TINY2 was able to form a specific complex with the previously characterized DRE element while showed only residual affinity to the GCC box. When fused to the GAL4 DNA-binding domain, either full-length or its C-terminus functioned effectively as a trans-activator in the yeast one-hybrid assay while its N-terminus was completely inactive. Our data indicate that TINY2 could be a new member of the AP2/EREBP transcription factor family involved in activation of down-stream genes in response to environmental stress.

Hybrid RANS and Potential Based Numerical Simulation for Self-Propulsion Performances of the Practical Container Ship

  • Kim, Jin;Kim, Kwang-Soo;Kim, Gun-Do;Park, Il-Ryong;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • 제10권4호
    • /
    • pp.1-11
    • /
    • 2006
  • The finite volume based multi-block RANS code, WAVIS developed at MOERI is applied to the numerical self-propulsion test. WAVIS uses the cell-centered finite volume method for discretization of the governing equations. The realizable $k-{\epsilon}$ turbulence model with a wall function is employed for the turbulence closure. The free surface is captured with the two-phase level set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. The propeller forces are obtained using an unsteady lifting surface method based on potential flow theory. The numerical procedure followed the self-propulsion model experiment based on the 1978 ITTC performance prediction method. The self-propulsion point is obtained iteratively through balancing the propeller thrust, the ship hull resistance and towing force that is correction for Reynolds number difference between the model and full scale. The unsteady lifting surface code is also iterated until the propeller induced velocity is converged in order to obtain the propeller force. The self-propulsion characteristics such as thrust deduction, wake fraction, propeller efficiency, and hull efficiency are compared with the experimental data of the practical container ship. The present paper shows that hybrid RANS and potential flow based numerical method is promising to predict the self-propulsion parameters of practical ships as a useful tool for the hull form and propeller design.