• Title/Summary/Keyword: hybrid full form

Search Result 8, Processing Time 0.024 seconds

Experimental Evaluation for Hydrodynamic Performance of a Hybrid Supported Type Fast Craft

  • Yang, S.I.;Koh, C.D.;Ahn, J.W.;Kim, Y.G.;Lee, J.-T.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.4
    • /
    • pp.34-44
    • /
    • 2000
  • This paper deals with the sea trial results of a fast craft with the hybrid supported type hul form. waterjet propulsion system and motion control system. The hybrid-type container ship operable in the sea with a wave height of y6 m, a speed of 50 knots and a payload of 1,500 tons were designed. A 1/8 scale 10 m- long test craft was constructed and tested in open seas. The hydrodynamic performance such as speed, turning, motion control in waves and waterjet thrush was analyzed.

  • PDF

THE VALUATION OF VARIANCE SWAPS UNDER STOCHASTIC VOLATILITY, STOCHASTIC INTEREST RATE AND FULL CORRELATION STRUCTURE

  • Cao, Jiling;Roslan, Teh Raihana Nazirah;Zhang, Wenjun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1167-1186
    • /
    • 2020
  • This paper considers the case of pricing discretely-sampled variance swaps under the class of equity-interest rate hybridization. Our modeling framework consists of the equity which follows the dynamics of the Heston stochastic volatility model, and the stochastic interest rate is driven by the Cox-Ingersoll-Ross (CIR) process with full correlation structure imposed among the state variables. This full correlation structure possesses the limitation to have fully analytical pricing formula for hybrid models of variance swaps, due to the non-affinity property embedded in the model itself. We address this issue by obtaining an efficient semi-closed form pricing formula of variance swaps for an approximation of the hybrid model via the derivation of characteristic functions. Subsequently, we implement numerical experiments to evaluate the accuracy of our pricing formula. Our findings confirm that the impact of the correlation between the underlying and the interest rate is significant for pricing discretely-sampled variance swaps.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials (유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, JiHyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

An Area Optimization Method for Digital Filter Design

  • Yoon, Sang-Hun;Chong, Jong-Wha;Lin, Chi-Ho
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.545-554
    • /
    • 2004
  • In this paper, we propose an efficient design method for area optimization in a digital filter. The conventional methods to reduce the number of adders in a filter have the problem of a long critical path delay caused by the deep logic depth of the filter due to adder sharing. Furthermore, there is such a disadvantage that they use the transposed direct form (TDF) filter which needs more registers than those of the direct form (DF) filter. In this paper, we present a hybrid structure of a TDF and DF based on the flattened coefficients method so that it can reduce the number of flip-flops and full-adders without additional critical path delay. We also propose a resource sharing method and sharing-pattern searching algorithm to reduce the number of adders without deepening the logic depth. Simulation results show that the proposed structure can save the number of adders and registers by 22 and 26%, respectively, compared to the best one used in the past.

  • PDF

Full mouth rehabilitation of mandibular edentulous patient using implant hybrid prosthesis (하악 무치악 환자에서 임플란트 하이브리드 보철물을 이용한 전악 수복 증례)

  • Kim, Seong-Bin;Kim, Sung-Hoi;Park, Young-Bum;Moon, Hong-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.214-220
    • /
    • 2013
  • Implant prosthodontics is beneficial for edentulous patients in enhancing the support, retention, stability, phonation and so on. Various types of prosthesis supported by implant, including implant retained- or supported- overdenture for the removable type and ceramo-metal and fixed prostheses with processed acrylic teeth for the fixed type, are frequently used. Treatment planning for the prosthesis with implant must be made after considering individual characteristics such as form of residual ridge, soft tissue, interocclusal relationship, economic status. Fixed prosthesis with processed acrylic teeth (also known as 'implant hybrid prosthesis' or 'bone anchored bridge') has the advantages of both removable and fixed prosthesis such as proper soft tissue profile, esthetic outcome, increased masticatory efficiency and psychological stability. The 73-years-old female patient came to the department of prosthodontics, Dental hospital of Yonsei University. She was diagnosed with Kennedy class I partial edentulism in the maxilla and complete edentulism in the mandible. This article reports a satisfactory clinical and esthetic outcome of full mouth rehabilitation using removable partial denture in the maxilla and implant hybrid prosthesis in the mandible.

Molecular Cloning, Phylogenetic Analysis, Expressional Profiling and In Vitro Studies of TINY2 from Arabidopsis thaliana

  • Wei, Gang;Pan, Yi;Lei, Juan;Zhu, Yu-Xian
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.440-446
    • /
    • 2005
  • A cDNA that was rapidly induced upon abscisic acid, cold, drought, mechanical wounding and to a lesser extent, by high salinity treatment, was isolated from Arabidopsis seedlings. It was classified as DREB subfamily member based on multiple sequence alignment and phylogenetic characterization. Since it encoded a protein with a typical ERF/AP2 DNA-binding domain and was closely related to the TINY gene, we named it TINY2. Gel retardation assay revealed that TINY2 was able to form a specific complex with the previously characterized DRE element while showed only residual affinity to the GCC box. When fused to the GAL4 DNA-binding domain, either full-length or its C-terminus functioned effectively as a trans-activator in the yeast one-hybrid assay while its N-terminus was completely inactive. Our data indicate that TINY2 could be a new member of the AP2/EREBP transcription factor family involved in activation of down-stream genes in response to environmental stress.

Hybrid RANS and Potential Based Numerical Simulation for Self-Propulsion Performances of the Practical Container Ship

  • Kim, Jin;Kim, Kwang-Soo;Kim, Gun-Do;Park, Il-Ryong;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • The finite volume based multi-block RANS code, WAVIS developed at MOERI is applied to the numerical self-propulsion test. WAVIS uses the cell-centered finite volume method for discretization of the governing equations. The realizable $k-{\epsilon}$ turbulence model with a wall function is employed for the turbulence closure. The free surface is captured with the two-phase level set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. The propeller forces are obtained using an unsteady lifting surface method based on potential flow theory. The numerical procedure followed the self-propulsion model experiment based on the 1978 ITTC performance prediction method. The self-propulsion point is obtained iteratively through balancing the propeller thrust, the ship hull resistance and towing force that is correction for Reynolds number difference between the model and full scale. The unsteady lifting surface code is also iterated until the propeller induced velocity is converged in order to obtain the propeller force. The self-propulsion characteristics such as thrust deduction, wake fraction, propeller efficiency, and hull efficiency are compared with the experimental data of the practical container ship. The present paper shows that hybrid RANS and potential flow based numerical method is promising to predict the self-propulsion parameters of practical ships as a useful tool for the hull form and propeller design.