• Title/Summary/Keyword: hybrid drone

Search Result 16, Processing Time 0.023 seconds

A Study on Hybrid Power Generation System for Hour-Flight Drone (시간체공 드론 적용을 위한 하이브리드 동력시스템 연구)

  • Myung-Wook Choi;Seung-Jin Yang;Jung-Min Lim;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.269-276
    • /
    • 2023
  • In this research works, we propose a hybrid power generation system for drone capable of staying in the air for more than 1 hour. This power system converts the alternating current generated by the generator into direct current through a diode bridge circuit to charge the battery and uses a battery system having separated cells to obtain high controllability of the power system. The fuel efficiency and the power output for individual load were analyzed, and also the performance of a selected generator was studied in this paper. The drone which is equipped with the proposed hybrid power generation system calculated 0.82 ratio for weight vs power output, and flight time of drone showed 4,179 seconds.

A Study on the VR-based Drone Immersive Content Development and Experience Effect (VR기반 드론 실감형 콘텐츠 개발 및 체험효과에 관한 연구)

  • Lee, In-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.663-671
    • /
    • 2022
  • Practice through virtual reality can increase the educational effect regardless of time and place, and it is an educational method that is being pursued even in the situation of COVID-19. On the other hand, for VR-based education, related technology development and content development must be made, and experiential methods (flipped learning, blended learning, hybrid learning) must be provided in the educational process. The development scenario was developed with the contents of drone qualification test (ultra-light unmanned multicopter) and drone practice and the possibility of non-face-to-face self-directed learning (flipped learning, blended learning, hybrid learning). It is expected that the quality of vocational education related to drones and the effect of high education will be improved through the contents, and it is thought that it will be possible to suggest a direction for the development of various vocational education contents in non-face-to-face education.

Multi Objective Vehicle and Drone Routing Problem with Time Window

  • Park, Tae Joon;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.167-178
    • /
    • 2019
  • In this paper, we study the multi-objectives vehicle and drone routing problem with time windows, MOVDRPTW for short, which is defined in an urban delivery network. We consider the dual modal delivery system consisting of drones and vehicles. Drones are used as a complement to the vehicle and operate in a point to point manner between the depot and the customer. Customers make various requests. They prefer to receive delivery services within the predetermined time range and some customers require fast delivery. The purpose of this paper is to investigate the effectiveness of the delivery strategy of using drones and vehicles together with a multi-objective measures. As experiment datasets, we use the instances generated based on actual courier delivery data. We propose a hybrid multi-objective evolutionary algorithm for solving MOVDRPTW. Our results confirm that the vehicle-drone mixed strategy has 30% cost advantage over vehicle only strategy.

Development and Verification of UAV-UGV Hybrid Robot System (드론-지상 하이브리드 로봇 시스템 개발 및 검증)

  • Jongwoon Woo;Jihoon Kim;Changhyun Sung;Byeongwoo Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.233-240
    • /
    • 2023
  • In this paper, we proposed a hybrid type robot that simultaneously surveillance and reconnaissance on the ground and in the air. It was possible to expand the surveillance and reconnaissance range by expanding the surveillance and reconnaissance area of the ground robot and quickly moving to the hidden area through the drone. First, ground robots go to mission areas through drones and perform surveillance and reconnaissance missions for urban warfare or mountainous areas. Second, drones move ground robots quickly. It transmits surveillance and reconnaissance images of ground robots to the control system and performs reconnaissance missions at the same time. Finally, in order to secure the interoperability of these hybrid robots, basic performance and environmental performance were verified. The evaluation method was tested and verified based on the KS standards.

Experimental Verification on the Extending Flight Time of Solar Paper for Drone using Battery for Electric Vehicles (장기 체공 태양광 드론의 비행시간 연장에 관한 실험적 검증)

  • Wooram Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.229-235
    • /
    • 2023
  • Recently, for drones to be used for agricultural applications, it is necessary to increase the payload and extending flight time. Currently, the payload and extending flight time are limited by the battery technology for solar paper drone. In addition, charging or replacing the batteries may be a practical solution at the field that requires near continuous operation. In this paper, the procedure to optimize the main power system of an electric hybrid drone that consists of a battery and electric motor is presented. As a result, the solar paper drone flied successfully for 2-3%. The developed solar paper drone consumes and average of 55W when cruising and can receive up to 25W of energy during the day, and its extending flight time was verified through flight tests.

Power System Optimization for Electric Hybrid Unmanned Drone (전동 하이브리드 무인 드론의 동력 계통 최적화)

  • Park, Jung-Hwan;Lyu, Hee-Gyeong;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.300-308
    • /
    • 2019
  • For drones to be used for industrial or agricultural applications, it is necessary to increase the payload and endurance. Currently, the payload and endurance are limited by the battery technology for electric powered drones. In addition, charging or replacing the batteries may not be a practical solution at the field that requires near continuous operation. In this paper, a procedure to optimize the power system of an electric hybrid drone that consists of an internal combustion engine, a generator, a battery, and electric motors is presented. The example drone for crop dusting is sized for easy transportation with a maximum takeoff weight of 200 kg. The two main rotors that are mechanically connected to the internal combustion engine provides most of the lift. The drone is controled by four electric motors that are driven by the generator. By analyzing the flow of the energy, a methodology to select the optimum propeller and motor among the commercially available models is described. Then, a procedure of finding the optimum operational condition along with the proper gear reduction ratios for the internal combustion engine based on the test data is presented.

A Trend Survey on Precision Positioning Technology for Drones (드론 정밀 측위 기술 동향)

  • J.H. Lee;J. Jeon;K. Han;Y. Cho;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Drones, which were early operated by remote control, have evolved to enable autonomous flight by combining various sensors and software tools. In particular, autonomous flight of drones was possible since the application of GNSS-RTK (global navigation satellite system with real-time kinematic positioning), a precision satellite navigation technology. For instance, unmanned drone delivery based on GNSS-RTK data was demonstrated for pizza delivery in Korea for the first time in 2021. However, the vulnerabilities of GNSS-RTK should be overcome for delivery drones to be commercialized. In particular, jamming in the navigation system and low positioning accuracy in urban areas should be addressed. Solving these two problems can lead to stable flight, takeoff, and landing of drones in urban areas, and the corresponding solutions are expected to establish a hybrid positioning technology. We discuss current trends in hybrid positioning technology that can either replace or complement GNSS-RTK for stable drone autonomous flight.

A Study on the Game Contents Design of Drone Educational Training Using AR (AR을 활용한 드론 교육 훈련 게임 콘텐츠 설계)

  • Choi, Chang-Min;Jung, Hyung-Won
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.383-390
    • /
    • 2021
  • Recently, the drone industry is rapidly expanding as it is suggested that it will be used in various fields. As the size of the drone market grows, interest in drone-related certificates is also increasing. However, the current drone-related qualification system and education system are insufficient. Thus this study, analyzed the necessity of drone training, the features of functional games, and the effectiveness of educational training using AR through related technical studies to solve the practical difficulties of drone educational training. Later, drone educational training game contents using AR were divided into practice mode and test mode based on the drone national qualification course practical test, and the result screen was displayed at the end of the curriculum so that players could learn by level and evaluate the results on their own. In addition, constructed a hybrid processing system and network and AR operation system for response rate and response speed, implemented drone training game contents utilizing AR based on the design contents. It is expected that the use of game content using AR presented in this paper for drone training will further alleviate environmental difficulties and improve the sense of immersion in play, which will lead to a more effective drone educational training experience.

The Evaluation of an Electric Hybrid Power System for the High Endurance Drone (장기체공 드론용 하이브리드 전기 추진시스템 성능 평가)

  • Gang, Byeong Gyu;Kim, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.539-544
    • /
    • 2022
  • This research shows the test performance of a 6 kW-scale hybrid electric power system for the high endurance drone. The power system is composed of a two-stroke reciprocal engine, starter-generator and battery, and they are integrated as one power unit. The engine is designed to provide the house for holding the starter-generator at the end of a crankshaft in turn the engine and starter-generator can maintain the same speed during the operational period. In this way, the generated power is readily controlled by just manipulating an engine throttle movement. Moreover, the starter-generator can initiate an engine operation with an aid of battery power until the combustion process becomes stabilized. In consequence, integration mechanism between an engine and generator is simplified, which results in weight reduction achieved. The duty of back-up battery is to provide a starting power to generator via a system controller in addition to covering momentarily power shortage. Therefore, the electric power system is vindicated to provide 6 kW power through a ground test.

Design of Hybrid Communication Structure for Video Transmission in Drone Systems (드론 영상 전송용 하이브리드 통신 구조의 설계)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.9-14
    • /
    • 2019
  • In modern society drones are actively utilized in the fields of security, defense, agriculture, communication and so on. Smart technology and artificial intelligence software have been developed with convergence, and the field of use is expected to expand further. On the point of the excellent performance of drones one of the essential technologies is the wireless communication that make the ground facility receive the video streaming obtained by the drones in the air. In the research the concept of communication region is proposed to cover the both the low altitude region for Wi-Fi communication and the high altitude region for LTE communication for the sake of video transmission. Also the hybrid communication structure is designed along the proposed concept and the proposed system is implemented as a communication system in the small size which can be mounted in a small size of drone. It is confirmed that the proposed system contains the effectiveness by showing the ability to successfully transmit HD video streaming in the range of 500 meters and the transfer time between two different communication systems is measured in 200msec by the experiments.