• 제목/요약/키워드: hybrid alloys

검색결과 48건 처리시간 0.024초

Zn, PTFE 복합 코팅에 의한 SS400 강의 해수 부식 특성 변화 연구 (Investigation of Corrosion Characteristics with Zn, PTFE Hybrid Coating for SS400 in Sea Water)

  • 한민수;박재철;장석기;김성종
    • Corrosion Science and Technology
    • /
    • 제10권6호
    • /
    • pp.205-211
    • /
    • 2011
  • The severe corrosion environment makes the steel product lifecycle short while Cu-alloys with anti-corrosion characteristic used in sea water are too expensive. This study shows that the Cu-alloy(Cu-37.25% Zn-0.67%Al) used in sea water environment can be superseded by SS400 with various coating process, evaluating electrochemical characteristics. Three coating processes were applied to SS400 such as PTFE + Zn coaing, Zn + PTFE coating and only Zn electrogalvanizing coaing. Various electrochemical experiments such as open circuit potential measurments, potentiodynamic polarization tests and analyses of Tafel constants. Mechanical properties were also measured by tensile test and hardness tests. As a result, Zn + PTFE coating for SS400 steel presented the excellent anti-corrosion characteristic in sea water.

절연슬리브가 A356 알루미늄 합금의 응고과정에 미치는 영향에 대한 연구 (A Study on the Effect of Insulating Sleeve on Solidification Characteristics of A356 Aluminum Alloy)

  • 오민주;유승목;조인성;김용현
    • 한국주조공학회지
    • /
    • 제31권4호
    • /
    • pp.205-211
    • /
    • 2011
  • Al-Si alloys have been steadily used as a potential material for the achievement of an efficient weight reduction in the automobile and aerospace industries due to its excellent castability and high strength-to-weight ratio. In this study, riser effect and mechanical properties were investigated according to the size of the sleeve. In addition, the effects of riser size on mechanical properties of castings were investigated. On the other hand flow and solidification process were simulated with a hybrid FDM/FEM package named ZCast. As a result, results of simulation and experiments were comparable regarding to the yield strength, tensile strength, elongation and hardness of casting. It proves the reliability of the simulation. It is expected that the proper size of riser can improve the recycling rate of metallic materials and reduce the cost of casting.

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

적층수에 따른 GFRP 피막 Al 평활재의 저주기 피로수명 평가 (Low Cycle Fatigue Life Behavior of GFRP Coated Aluminum Plates According to Layup Number)

  • 명노준;서지혜;이은균;최낙삼
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.332-339
    • /
    • 2018
  • 섬유 금속 적층판(Fiber metal hybrid laminate, FML)은 금속재료와 FRP의 접합으로 기존의 금속 소재가 가지지 못했던 뛰어난 물성과 가벼운 무게로 경제적인 구조용 재료로 사용된다. 그러나 섬유의 형태와 종류, 적층조건에 따라 물성의 차이가 크며, 파괴거동을 예측하기 어렵다는 단점이 있다. 본 논문에서는 Al6061-T6 합금에 직조형태의 유리섬유 플라스틱(GFRP, GEP118)을 적층피막한 복합재의 파손거동에 대해 연구한다. Al합금에 GFRP 1, 3, 5 겹을 피막한 3가지 조건으로 성형하고, 피막의 적층수를 변수로 정적시험과 저주기 피로시험을 병행하여 파손거동을 분석하였다. 저주기 피로시험에서는 변형률-수명 해석, 전변형률 에너지밀도법을 사용하여 분석하고, 피로수명을 예측하여 하이브리드 재료에 대한 수명예측성을 분석하였다. 인장해석 결과, GFRP 피막으로 인한 강화효과는 없었고, 피로시험시 나타나는 히스테리시스 형상은 GFRP피막 유무와 피막 수에 상관없이 모재인 Al합금의 거동을 따랐다. 저주기 피로시험 결과 GFRP의 피막으로 피로강도가 증가하였지만, GFRP의 두께에 따라 비례하여 증가하지는 않았다.

AIP 와 스퍼터링으로 복합증착된 420 스테인리스강의 TiN과 CrN 박막에 미치는 중간층의 영향 (Effect of Interlayer on TiN and CrN Thin Films of STS 420 Hybrid-Deposited by AlP and DC Magnetron Sputtering)

  • 최웅섭;김현승;박범수;이경구;이도재;이광민
    • 한국재료학회지
    • /
    • 제17권5호
    • /
    • pp.256-262
    • /
    • 2007
  • Effects of interlayer and the combination of different coating methods on the mechanical and corrosion behaviors of TiN and CrN coated on 420 stainless steel have been studied. STS 420 specimen were tempered at $300^{\circ}C$ for 1 hr in vacuum furnace. The TiN and CrN thin film with 2 ${\mu}m$ thickness were coated by arc ion plating and DC magnetron sputtering following the formation of interlayer for pure titanium and chromium with 0.2 ${\mu}m$ thickness. The microstructure and surface analysis of the specimen were conducted by using SEM, XRD and roughness tester. Mechanical properties such as hardness and adhesion also were examined. XRD patterns of TiN thin films showed that preferred TiN (111) orientation was observed. The peaks of CrN (111) and $Cr_2N$ (300) were only observed in CrN thin films deposited by arc ion plating. Both TiN and CrN deposited by arc ion plating had the higher adhesion and hardness compared to those formed by magnetron sputtering. The specimen of TiN and CrN on which interlayer deposited by magnetron sputtering and thin film deposited by arc ion plating had the highest adhesion with 22.2 N and 19.2 N. respectively. TiN and CrN samples shown the most noble corrosion potentials when the interlayers were deposited by using magnetron sputtering and the metal nitrides were deposited by using arc ion plating. The most noble corrosion potentials of TiN and CrN were found to be approximately -170 and -70 mV, respectively.

경량화 소재의 반용융 및 주조/단조기술 (Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials)

  • 강충길;최재찬;배원병
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF

Cr-free 코팅액에 의한 아연도금강판의 건조시간에 따른 내식특성 (Evaluation of the Corrosion Resistance of Steel Coated with Zinc Using a Cr-free Coating Solution as a Function of Heat Treatment Time)

  • 서현수;문희준;김종순;안석환;문창권;남기우
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.67-74
    • /
    • 2010
  • Chromate conversion coating is a coating technique used to passivate aluminum, zinc, cadmium, copper, silver, magnesium, tin, and their alloys to slow corrosion. The process uses various toxic chromium compounds, which may include hexavalent chromium. The industry is developing less toxic alternatives in order to comply with substance restriction legislation, such as RoHS. One alternative is to develop a Cr-free coating solution. In this study, eco-friendly, Cr-free solutions (urethane solution S-700, organic/inorganic solution with Si LRO-317) were used. Test specimens were dried in a drying oven at $190^{\circ}C$ for 3, 5, 7, and 9 minutes. Corrosion resistance was evaluated using a salt spray test for 72 hours. The results show that the optimum corrosion resistance was achieved at $190^{\circ}C$ for five minutes for EGI and three or five minutes for HDGI, respectively. The adhesive properties of the two types of coating solutions were superior regardless of drying time.

Influences of boron and silicon in insert alloys on microstructure and isothermal solidification during TLP bonding of a duplex stainless steel using MBF-35 and MBF-30

  • 원신건;김명복;강정윤
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.59-59
    • /
    • 2009
  • The influences of B and Si in the filler metals on microstructure and isothermal solidification during transient liquid-phase (TLP) bonding of a nitrogen-containing duplex stainless steel with MBF-30 (Ni-4.5wt.%Si-3.2wt.%B) and MBF-35 (Ni-7.3wt.%Si-2.2wt.%B), were studied at the temperature range of $1030-1090^{\circ}C$ with various times from 60 s to 3600 s under a vacuum of approximately $10^{-5}$ Torr. In case of the former, BN, $Ni_3B$ and $Ni_3Si$ precipitates were formed in the bonding region. BN and $Ni_3Si$ secondary phases were present in the joint for the latter case. The formation of $Ni_3B$ within the joint centerline is dependent on B content. The morphology of $Ni_3Si$ is dominated by Si concentration. A difference between the times for complete isothermal solidification obtained by the experiments and the conventional TLP bonding diffusion model was observed when using MBF-35. According to the simulated results, the isothermal solidification completion time for MBF-35 case was smaller than that in MBF-30. However, this experimental value obtained using MBF-35 was notably larger than that obtained using MBF-30. Isothermal solidification of liquid MBF-30 is controlled by the first isothermal solidification regime dependent on B diffusion model, whereas that of liquid MBF-35 experiences two isothermal solidification regimes and is mainly controlled by the second isothermal solidification dependent on Si diffusion model. In addition, only if Si content exceeds a critical value, the slower 2nd solidification regime will commence.

  • PDF