• Title/Summary/Keyword: hybrid alloys

Search Result 47, Processing Time 0.023 seconds

HIGH BURNUP FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeong, Yong-Hwan;Kim, Keon-Sik;Bang, Je-Geon;Chun, Tae-Hyun;Kim, Hyung-Kyu;Song, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • High bum-up fuel technology has been developed through a national R&D program, which covers key technology areas such as claddings, $UO_2$ pellets, spacer grids, performance code, and fuel assembly tests. New cladding alloys were developed through alloy designs, tube fabrication, out-of-pile test and in-reactor test. The new Zr-Nb tubes are found to be much better in their corrosion resistance and creep strength than the Zircaloy-4 tube, owing to an optimized composition and heat treatment of the new Zr-Nb alloys. A new fabrication technology for large grain $UO_2$ pellets was developed using various uranium oxide seeds and a micro-doping of Al. The uranium oxide seeds, which were added to $UO_2$ powder, were prepared by oxidizing and heat-treating scrap $UO_2$ pellets. A $UO_2$ pellet containing tungsten channels was fabricated for a thermal conductivity enhancement. For the fuel performance analysis, new high burnup models were developed and implemented in a code. This code was verified by an international database and our own database. The developed spacer grid has two features of contoured contact spring and hybrid mixing vanes. Mechanical and hydraulic tests showed that the spacer grid is superior in its rodsupporting, wear resistance and CHF performance. Finally, fuel assembly test technology was also developed. Facilities for mechanical and thermal hydraulic tests were constructed and are now in operation. Several achievements are to be utilized soon by the Korea Nuclear Fuel and thereby contribute to the economy and safety of PWR fuel in Korea

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.

Improvement of the Mechanical Property and Corrosion Resistivity of the Ni-/Fe-based Hybrid Coating Layer using High-velocity Oxygen Fuel Spraying by Heat Treatment (열처리를 통한 Ni/Fe계 하이브리드 용사 코팅층의 기계적 특성 및 내식성 향상)

  • Kim, Jungjoon;Lee, Yeonjoo;Kim, Song-Yi;Lee, Jong-Jae;Kim, Jae-hun;Lee, Seok-Jae;Lim, Hyunkyu;Lee, Min-Ha;Kim, Hwi-Jun;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.240-246
    • /
    • 2022
  • Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.

A Study on the Fabrication of 2700 Series Al-alloy Sintered for Automobile Application (자동차 부품용 2700계열 Al소결체 제작에 관한 연구)

  • Lim, Tae-Whan;Jang, Tae-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5438-5442
    • /
    • 2011
  • In order to use as weight-reduced sintered parts for automobiles, mechanical properties of sintered compacts of 2712 Al-alloys containing 0, 10, 20, and 33% ceramics, respectively, were investigated in this study. (1)Regardless of ceramic contents, all sintered compacts possessed 4~7% pores. (2)After aging the compacts sintered for 12 minutes, tensile strength of the 2712 Al-alloys containing 0, 10, 20, and 33% ceramics was 165, 260, 256, and 166 N/$mm^2$, respectively, whereas those aged after sintering for 30 minutes exhibited the tensile strength of 186, 229, 219, and 202 N/$mm^2$, respectively. In addition, the 2712 sintered compact containing 10% ceramics showed the maximum elongation of about 3.6%, (3)After aging the 10% ceramic-containing sintered compacts reached a maximum apparent hardness ($H_RF$) of 97. (4)The minimum wear volume ($174{\times}10^{-3}mm^3$) was shown in the 10% ceramic-containing 2712 sintered compact after aging. From these results, the 2712 sintered compact containing 10% ceramics thought to be the most suitable one for the fabrication of aluminum engine part.

Variation of Material Characteristics of a Hot-formed AZ31 Magnesium Alloy (마그네슘 합금 AZ31의 온간성형과 재료특성변화에 관한 연구)

  • Suh, Chang-Min;Hor, Kwang-Ho;Kim, Hyo-Min;Suh, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.913-919
    • /
    • 2013
  • Magnesium alloys are known to be hard-forming materials at room temperature owing to their material structure. This study analyzes the optimal temperature conditions of warm-forming and the forming process by using a high-pressure laminating test and FM analysis, respectively. The effect of temperature on the fatigue limit was examined from the collected specimens by analyzing the material properties after the fatigue test. The material formed at a temperature of $230^{\circ}C$ shows occasional defects, but the best forming quality was obtained at $270^{\circ}C$. The optimal temperature for the forming process was found to be $250^{\circ}C$ considering the material quality and thermal efficiency. The overall fatigue life of specimens decreases with an increase in the processing temperature. The fatigue limit of AZ31 formed at $250^{\circ}C$ was approximately 100 MPa after $10^6$ cycles.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

Effect of Homogenization Treatment on Magnetic Properties of HDDR Treated Nd-Fe-Ga-Nb-B Alloy (모합금의 균질화처리가 HDDR 처리된 Nd-Fe-Ga-Nb-B 합금의 자기적 특성에 미치는 영향)

  • Yu, J.H.;Lee, S.H.;Kim, D.H.;Lee, D.W.;Kim, B.K.;Choi, M.H.;Kim, Y.D.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.285-290
    • /
    • 2009
  • HDDR treated anisotropic Nd-Fe-B powders have been widely used, due to their excellent magnetic properties, especially for sheet motors and sunroof motors of hybrid and electric vehicles. Final microstructure and coercivity of such Nd-Fe-B powders depend on the state of starting mother alloys, so additional homogenization treatment is required for improving magnetic properties of them. In this study, a homogenization treatment was performed at $900\sim1140^{\circ}C$ in order to control the grain size and Nd-rich phase distribution, and at the same time to improve coercivity of the HDDR treated magnetic powders. FE-SEM was used for observing grain size of the HDDR treated powder and EPMA was employed to observe distribution of Nd-rich phase. Magnetic properties were analyzed with a vibrating sample magnetometer.

Improvement of Impact Resistance of Composite Structures using Shape Memory Alloys (형상기억합금을 이용한 복합재료 구조물의 저속충격특성 향상)

  • Kim, Eun-Ho;Rim, Mi-Sun;Lee, In;Kim, Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.453-456
    • /
    • 2009
  • Impact resistance of shape memory alloy hybrid composite(SMAHC) plates were experimentally investigated. Shape memory alloy(SMA) have large failure strain and failure stress and can absorb large strain energies through phase transformation. SMA wires were embedded in composite plates to improve their weak impact resistance. Tensile tests of SMA wires were performed at various temperature to investigate their thermo-mechanical properties. Low-Velocity impact tests of several types of composite plates with SMA/Al/Fe were performed. Embedding SMA wires was most effective to improve impact resistance of composite plates. The effects of SMA position on impact resistance were also investigated.

  • PDF

Characterizing Pb-based superconducting thin films

  • Park, Sang-Il;Kim, Hong-Seok;Lee, Joon Sung;Doh, Yong-Joo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.36-39
    • /
    • 2014
  • We report on the superconducting and structural characteristics of Pb-based alloy ($Pb_{0.9}In_{0.1}$, $Pb_{0.8}In_{0.2}$ and $Pb_{0.85}Bi_{0.15}$) thin films, depending on the film deposition rate. The maximum critical magnetic field strength of $Pb_{0.85}Bi_{0.15}$ is almost six times larger than that of $Pb_{0.9}In_{0.1}$, and more rapid growth of the film enhances the critical magnetic field strength even for the same alloy material. Scanning electron microscopy inspection indicates that lower deposition rate condition is vulnerable to the formation of void structure in the film. Topographic images using atomic force microscopy are useful to optimize the deposition condition for the growth of smooth superconducting film. Our work can be utilized for future studies on hybrid superconducting devices using low-dimensional nanostructures.

Investigation of Corrosion Characteristics with Zn, PTFE Hybrid Coating for SS400 in Sea Water (Zn, PTFE 복합 코팅에 의한 SS400 강의 해수 부식 특성 변화 연구)

  • Han, Min Su;Prak, Jae Cheul;Jang, Seok Ki;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.205-211
    • /
    • 2011
  • The severe corrosion environment makes the steel product lifecycle short while Cu-alloys with anti-corrosion characteristic used in sea water are too expensive. This study shows that the Cu-alloy(Cu-37.25% Zn-0.67%Al) used in sea water environment can be superseded by SS400 with various coating process, evaluating electrochemical characteristics. Three coating processes were applied to SS400 such as PTFE + Zn coaing, Zn + PTFE coating and only Zn electrogalvanizing coaing. Various electrochemical experiments such as open circuit potential measurments, potentiodynamic polarization tests and analyses of Tafel constants. Mechanical properties were also measured by tensile test and hardness tests. As a result, Zn + PTFE coating for SS400 steel presented the excellent anti-corrosion characteristic in sea water.