• Title/Summary/Keyword: humid air

Search Result 140, Processing Time 0.031 seconds

An Experimental Study on the Performance of a Cross-Flow-Type, Indirect Evaporative Cooler Made of Paper/Plastic Film (종이와 플라스틱 필름의 이종 재질로 구성된 직교류형 간접증발소자의 성능에 대한 실험적 연구)

  • Kwon, Mi-Hye;Go, Min-Geon;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.475-483
    • /
    • 2015
  • In Korea, a typically hot and humid summer means that air-conditioners consume a large quantity of electricity; accordingly, the simultaneous usage of an indirect evaporative cooler may reduce the sensible-heat level and save the amount of electricity that is consumed. In this study, the heat-transfer and pressure-drop characteristics of an indirect evaporative cooler made of paper/plastic film were investigated under both dry and wet conditions; for the purpose of comparison, an indirect evaporative cooler made of plastic film was also tested. Our results show that the indirect evaporative efficiencies under a wet condition are greater than those under a dry condition, and the efficiencies of the paper/plastic sample (109% to 138%) are greater than those (67% to 89%) of the plastic sample; in addition, the wet-surface, indirect evaporative efficiencies of the paper/plastic sample are 32% to 36% greater than those of the plastic sample. Further, the wet-surface pressure drops of the paper/plastic sample are 13% to 23% larger than those of the plastic sample, and this might have been caused by the surface roughness of the samples. A rigorous heat-transfer analysis revealed that, for the plastic sample, 30% to 37% of the wet channels remained dry, whereas all of the channels were wet for the paper/plastic sample.

Development of a Refrigeratory-Based Dehumidifier for Humidity Environment Control in Greenhouse (시설원예 습도환경 제어를 위한 냉각식 제습기 개발)

  • Kang, G.C.;Yon, K.S.;Ryou, Y.S.;Kim, Y.J.;Kang, Y.K.;Paek, Y.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.247-255
    • /
    • 2007
  • During the winter season in Korea, the relative humidity of greenhouse at night often exceeds 90% because air temperature inside the greenhouse is usually controlled using a heater with all of windows closed to minimize heat loss, thereby requiring the use of a dehumidifier that can maintain optimum humidity levels of $70{\sim}80%$ to provide a good growth condition of crops. Also, such a high humid condition can cause the development of a pest, such as insects, fungi or diseases. However, the use of most conventional dehumidifiers for low temperature dehumidification is limited because their performance is degraded due to frost accumulation on the evaporator coil. This study was carried out to develop a refrigeratory-based dehumidifier suitable for low temperature dehumidification in greenhouse cultivation. The developed dehumidifier consists of a condenser and an evaporator installed separately so that relative and absolute humidity levels can be reduced when air passed through the condenser and evaporator, respectively. The prototype dehumidifier showed a dehumidification capacity of $5{\sim}7kg/h$ when air with a temperature of $15{\sim}25^{\circ}C$ and a relative humidity of $70{\sim}95%$ came into the dehumidifier. Under the condition that either temperature or relative humidity was fixed, the amount of condensed water was proportional to the levels of both temperature and relative humidity.

Effects of a Forced Air-Flow System for Recovery of Turfgrass after Intensive Traffic Injury (집중적 답압 피해에서의 잔디 회복을 위한 강제 흡.호기 순환식 설비의 효과)

  • Lee, Jeong-Ho;Son, Jin-Su;Kim, In-Chul;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2007
  • Korea and Japan hosted the FIFA World Cup Soccer Game in 2002. Ten stadiums had been built and more than 30 soccer grounds for practice were renovated in Korea. Sport fields in both countries had problems on cool-season turfgrass growth and quality by summer decline during humid and warm climate especially followed by intensive uses. We measured the effects of air-flow system, which is designed to optimize rootzone soil gas and moisture levels to promote the growth and maintenance turfgrass. This experiment was carried out to verify the effects of the system on soil gas exchange, ground resilience, and turfgrass recovery in turfgrass rootzone. Within 1 or 2hr of operation of the system, rootzone soil gas ($CO_2$, $O_2$) levels returned to natural atmospheric levels completely Soil $CO_2$ levels began to decrease within the first 10 min of operation of the system. The levels were reduced from 1.3 to 0.06% after 30 min, and natural atmospheric levels within 1 hr. When the system was turned off, $CO_2$ levels increased to 0.36% and 0.7% after 5 and 20 hr, respectively. The application of the system did not affect the resilience of turf surface after traffic treatments. Higher traffic treatment resulted in higher surface resilience especially in zoysiagrass plots. Operation of the system had a significant beneficial impact on turf recovery by increased root dry wight and improved turf quality, as compared with the non-operated check plots.

Research on the Performance of Total Heat Exchanger in a Solar Air-Conditioning System (태양열 이용 냉난방 공조시스템 중 전열교환기 성능에 관한 연구)

  • Kim, K.H.;Choi, K.H.;Kum, J.S.;Kim, B.C.;Kim, J.R.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.45-53
    • /
    • 1999
  • This report Introduces a total heat exchanger in a solar air-conditioning system using Lithium Chloride(LiCl) solution. The hot and humid outside air is cooled and dehumidified by LiCl solution that is sprayed on the packed layer of the total heat exchanger. LiCl solution once diluted is concentrated again in a regenerator using solar energy. Three types as the packed materials were used in this experiment and the dehumidification performance was evaluated by the value of $k_xa(kg/h{\cdot}m^3{\cdot}{\Delta}x)$, overall mass transfer coefficient based on a humidity ratio potential difference, the influence of inlet LiCl solution flow rate, air flow rate, packed layer height on $k_xa$ was investigated. It was found that air flow rate, LiCl solution flow rate, packed layer height for all types had a great influnce on the value of $k_xa$.

  • PDF

A Study on Analysis for Decrease Cause and Improve Management Method of Landscape Tree in Highway (고속도로 조경수 감소 원인 분석 및 관리 개선에 관한 연구)

  • Jeon, Gi-Seong;Woo, Kyung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.86-95
    • /
    • 2003
  • The object of this paper is to correct check the tree situation and quantity around highway. Also, those data utilize in order to establish plan about how to the long and short term landscape construction and maintain program. The result of this study can be summarized as follows; 1. Tree decrease rates for 8 branch offices were Jongbu(5.62%), Gangwon(4.32%), Chungcheong (3.35%), Honam(5.62%), Gyeongbuk(3.06%), Gyeongnam(5.60%), Seorak training center(0.31%), Headquarter(1.54%). Also decrease causes were traffic accidents(1.8%), air po11ution(4.7%), humid damage(0.9%), insect and disease(1.2%), wind and rainfall(3.4%), dry damage(3.5%), cold damage (1.0%), fire(3.1%), damage of the man and anima1(4.1%), remove bad tree(13.1%), bad rooting(9.5%) and etc.(53.7%). 2. Improve methods of tree death problems were regulation management(ferti1ize, irrigation and pesticide work), improvement of draining system, Pull out the weeds, Plant native plants, utilize organic matter fertilize and plant environment trees.

The Effect of Surface State of Brass Coated Steel Cord on the Adhesion between Cord and Rubber Compound (황동이 피복된 코드의 표면 상태가 배합고무와 코드의 접착에 미치는 영향)

  • Seo, Gon;Ryoo, Min-Woong;Jeon, Dae-Jin;Sohn, Bong-Young
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1056-1061
    • /
    • 1994
  • Adhesion between cord and rubber compound of brass plated steel cords pretreated at $80^{\circ}C$ in air and at $80^{\circ}C$ and 85% of relative humidity was studied. Surface change of brass with pretreatment was also studied. Brass was oxidized at thermal treatment and oxidation was accelerated with water at humid treatment. Adhesion of pretreated cords decreased with treatment period. The decreasing tendency of rubber coverage was severe. Decrease in adhesion properties due to brass oxidation was discussed relating to the overgrowth of zinc oxide layer.

  • PDF

Structural modeling of actuation of IPMC in dry environment: effect of water content and activity

  • Swarrup, J. Sakthi;Ranjan, Ganguli;Giridhar, Madras
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.553-565
    • /
    • 2017
  • Structural modeling of unencapsulated ionic polymer metal composite (u-IPMC) actuators that are used for flapping the insect scale-flapping wing of micro air vehicles (FMAV) in dry environmental conditions is carried out. Structural modeling for optimization of design parameters for retention of water, maximize actuation performance and to study the influence of water activity on the actuation characteristics of u-IPMC is explored for use in FMAV. The influence of equivalent weight of Nafion polymer, cations, concentration of cations, pre-treatment procedures on retention of water of u-IPMCs and on actuation parameters, flapping angle, flexural stiffness and actuation displacement are investigated. IPMC designed with Nafion having equivalent weight 900-1100, pre-heated at $30^{\circ}C$ and with sodium as the cations is promising for optimum retention of water and actuation performance. The actuation parameters while in operation in dry and humid environment with varying water activity can be tuned to desirable frequency, deflection, flap angle and flexural stiffness by changing the water activity and operational temperature of the environment.

A Study on the Wearing Comfort in Velvet Fabrics (Velvet 직물의 인체 착의 실험을 통한 착용감 연구)

  • Cho, Ji-Hyun;Ryu, Duck-Hwan;Lee, Yj-Ja
    • Korean Journal of Human Ecology
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1996
  • The purpose of this study is to examine and to evaluate the wearing performance of pile materials to produce velvet fabrics which have excellent wearing comfort. Acetate velvet, Cuprammonium rayon velvet were combined as textiles for clothing and acetate and viscose rayon were as textiles for lining at the environmental condition of temperature $15^{\circ}C,\;18^{\circ}C,\;21^{\circ}C,\;24^{\circ}C$, relative humidity $50{\pm}5%$ and air velocity 0.25 m/sec. Wearing comfort among 4 materials combinations(Aa, Av, Ra, Rv) was examined and compared. The results are as follows. The investigation of mean skin temperature for environmental temperature and material combinations showed that the mean temperature had a significant difference at the p<0.01 level in accordance with environmental temperature and material combinations.(Aa>Av>Ra>Rv) Moreover, in clothing climate only clothing temperature tended to increase almost linearly but at $24^{\circ}C$ there was no significant difference among textiles for lining compared with the other environmental temperatures. In subjective sensations thermal sensation and comfort sensation showed a significant difference in environmental temperatures and materials.(Aa>Av>Ra>Rv) Though a subject felt warmer, more humid, and more uncomfortable at $24^{\circ}C$ for all of the material combinations comparing with the other temperatures, there was no significant difference in materials.

  • PDF

Heat and Mass Transfer in Hygroscopic Rotor During Adsorption and Desorption Process (흡착과 탈착 과정 동안 제습 로터의 열/물질 전달)

  • Shin, Hyun-Geun;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.977-984
    • /
    • 2013
  • A hygroscopic rotor comprises many microchannels with high adsorption characteristics. In this study, the iterative adsorption/desorption processes that were affected by the humid air flow in a channel were numerically simulated. In consideration of the accuracy and computational costs, in the desiccant layer, only surface diffusion was considered in this simulation. The results were compared with the previous numerical results and found to show good agreement. By conjugating the heat and mass transfer between the desiccant and the flow layers, temporal and spatial changes in the vapor mass fraction, adsorbed liquid water mass fraction, and temperature in the channel were presented.

Bioinspired superhydrophobic steel surfaces

  • Heo, Eun-Gyu;O, Gyu-Hwan;Lee, Gwang-Ryeol;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.509-509
    • /
    • 2011
  • Superhydrophobic surfaces on alloyed steels were fabricated with a non-conventional method of plasma etching and subsequent water immersion procedure. High aspect ratio nanopatterns of nanoflake or nano-needle were created on the steels with various Cr content in its composition. With CF4 plasma treatment in radio-frequence chemical vapor deposition (r.-f. CVD) method, steel surfaces were etched and fluorinated by CF4 plasma, which induced the nanopattern evolution through the water immersion process. It was found that fluorine ion played a role as a catalyst to form nanopatterns in water elucidated with XPS and TEM analysis. The hierarchical patterns in micro- and nano scale leads to superhydrophobic properties on the surfaces by deposition of a hydrophobic coating with a-C:H:Si:O film deposited with a gas precursor of hexamethlydisiloxane (HMDSO) with its lower surface energy of 24.2 mN/m, similar to that of curticular wax covering lotus surfaces. Since this method is based on plasma dry etching & coating, precise patterning of surface texturing would be potential on steel or metal surfaces. Patterned hydrophobic steel surfaces were demonstrated by mimicking the Robinia pseudoacacia or acacia leaf, on which water was collected from the humid air using a patterned hydrophobicity on the steels. It is expected that this facile, non-toxic and fast technique would accelerate the large-scale production of superhydrophobic engineering materials with industrial applications.

  • PDF