• Title/Summary/Keyword: humic matter

Search Result 136, Processing Time 0.02 seconds

Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment Processes (기존수처리 공정 및 고도정수처리 공정에서 NOM의 분자크기 분포 변화)

  • Choi, Il-Hwan;Jung, Yu-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.682-689
    • /
    • 2008
  • The purpose of this study was to find out the variation between molecular size distribution (MSD) of natural organic matter (NOM) in raw waters after different water treatment processes like conventional process (coagulation, flocculation, filtration) followed by advanced oxidation process (ozonation, GAC adsorption). The MSD of NOM of Suji pilot plant were determined by Liquid Chromatography-Organic Carbon Detection (LC-OCD) which is a kine of high-performance size-exclusion chromatography (HPSEC) with nondispersive infrared (NDIR) detector and $UV_{254}$ detector. Five distinct fractions were generally separated from water samples with the Toyopearl HW-50S column, using 28 mmol phosphate buffer at pH 6.58 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface water. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. No more distinct variation of MSD was observed by ozone process after sand filtration but the SUVA value were obviously reduced during increase of the ozone doses. UVD results and HS-Diagram demonstrate that ozone induce not the variation of molecular size of humic substance but change the bond structure from aromatic rings or double bonds to single bond. Granular activated carbon (GAC) filtration removed 8~9% of organic compounds and showed better adsorption property for small MSD than large one.

Changes in Spectroscopic and Molecular Weight Characteristics of Dissolved Organic Matter in an Agriculture Reservoir during a Summer Monsoon (장마시기에 따른 농업용 저수지 내 용존 유기물 분광특성과 분자량 변화)

  • Jung, Ka-Young;Lee, Yun Kyung;Yoo, HaYoung;Nam, Gui-Sook;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.458-468
    • /
    • 2021
  • In this study, we investigated the variations of dissolved organic matter (DOM) in an agricultural reservoir during the monsoon period (June to October, 2020) with respect to the organic carbon concentration (DOC), molecular weight distribution, and optical properties. The monsoon period was divided into three phases - beginning storm (BS), during storm (DS), and after storm (AS). Our results showed significant differences in the concentrations and characteristics of DOM during the summer monsoon. The DOC concentrations were decreased after the monsoon, probably due to a dilution effect. In contrast, increasing trends were observed in the specific UV absorbance (SUVA), and relative abundances of humic-like fluorescence and larger-sized compounds. These observations implied that the large-sized and humic-like organic components with terrestrial origins strongly affected the reservoir DOM after the summer monsoon. Meanwhile, biopolymer size fraction, which is associated with algal activity, became more abundant after the monsoon. These results suggest that DOM with autochthonous sources became dominant as a result of the inflow of nutrients into the reservoir after the storm. Spatial changes in DOM within the reservoir were not pronounced as much as the temporal variations. All taken, it can be concluded that the summer monsoon simply led to the decrease of DOM concentrations while the sources and the quality of DOM underwent substantial changes, which may enrich refractory organic matter in the reservoir. This study reveals the importance of in-depth DOM quality monitoring before and after summer monsoon for effective water quality management in agricultural reservoirs.

CHARACTERIZATION OF RECALCITRANT DISSOLVED ORGANIC MATTER IN LAKE AND INFLOW RIVER WATERS

  • Kim, Yong-Hwan;Lee, Shun-Hwa;Kim, Jung-Ho;Park, Jong-Woong;Choi, Kwang-Soon
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.181-193
    • /
    • 2006
  • The hydrophilic or hydrophobic characteristics of dissolved organic matter (DOM) from different origins in lake and river waters were investigated using spectrometric and chromatographic analyses of water samples. DOM in a deep, mesotrophic lake (Lake Unmun) was fractionated using three types of ion exchange resins and classified into aquatic humic substances (AHS), hydrophobic neutrals (HoN), hydrophilic acids (HiA), hydrophilic neutrals (HiN), and bases (BaS). The DOM fractionation provided insight into the understanding of the nature of heterogeneous DOM molecules present in different water sources. The UV/DOC ratios were determined for samples from the influent river and lake waters during DOM fractionation and incubation. AHS prevailed over DOM in the lake and river waters. After biodegradation, the relative contribution of AHS in the total DOM became more significant. It indicates that the AHS fraction would increase while water stay long time in the lake.

Composting of Livestock Manure Blending Humic Acid Powder and Influences on Growth of Lettuce by Its Application (부식산분말 처리에 따른 가축분의 퇴비화 특성 및 시비효과)

  • Lee, Tae-Soon;Cho, Sung-Hyun;Jeong, Je-Yong;An, Ji-Ye;Lee, Jong-Jin;Han, Ki-Pil;Hong, Joo-Hwa;Kim, Young-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.5-14
    • /
    • 2017
  • Humic acid was used soil amendment or functional fertilizer in Korean agriculture, and its cation exchangeable capacity was high enough to increase soil buffering from plant toxicant. This study was conducted to evaluate effects of humic acid powder (HA) on composting of livestock manure (LM) and of its application on growth of lettuce. Treatments were designed as follows; livestock manure compost (LM+sawdust+bark+castor meal; Control), control+0.1% HA (0.1% HA), control+0.5% HA (0.5% HA), control+1.0% HA (1.0% HA), control+3.0% HA (3.0% HA), and control+5.0% HA (5.0% HA). The changes of temperature, water content, organic matter content, total nitrogen and ratio of organic matter and nitrogen in HA treatments were similar to those of control. Although pH of 3.0% HA and 5.0% HA blending with HA and LM was lower than those of others, it unaffected by HA blending during composting. Humic acid content of HA treatments was increased by 1.7~4.4 folds than that of control. As compared with odor index, 3.0% HA and 5% HA were decreased than control for composting time. Application of 3.0% HA increased the dry weight of lettuce by about 7% than that of control.

Systematic study on calcium-dissolved organic matter interaction in a forward osmosis membrane-filtration system (정삼투 멤브레인 공정에서 칼슘이온과 용존 유기물 상호작용에 의한 플럭스 변화 연구)

  • Heo, Jiyong;Han, Jonghun;Kim, Yejin;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.737-744
    • /
    • 2016
  • The investigation of effects on fouling propensity with various viscosity of feed solutions would be better understanding for forward osmosis (FO) performance since the fouling propensity was directly influenced with solution viscosity. Therefore, this study was focused on the FO fouling with model foultants (humic acid, alginate) by altering solution viscosity with change of ionic strength (I.S) and $Ca^{2+}$ concentrations. In the comparison between humic acid and alginate, as expected, the alginate generally caused more severe fouling (almost 35.8 % of flux reduction) based on the solution characteristics (high viscosity) and fouling patterns (coil and gel layer). However, interesting point to note is that the fouling propensity of alginate was more severe even though it was applied with low viscosity of feed conditions (I.S = 20 mM, $Ca^{2+}=1mM$). This might be due to that crossed linked gel layer of alginate on the FO membrane surface could be best formed in the condition of $Ca^{2+}$ presence and higher I.S, and that is more dominant to fouling propensity than the low viscosity of feed solutions.

Draft genome sequence of humic substance-degrading Pseudomonas sp. PAMC 29040 from Antarctic tundra soil (천연 복합유기화합물인 부식질을 분해하는 남극 툰드라 토양 Pseudomonas sp. PAMC 29040의 유전체 분석)

  • Kim, Dockyu;Lee, Hyoungseok
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.83-85
    • /
    • 2019
  • Pseudomonas sp. PAMC 29040 was isolated from a maritime tundra soil in Antarctica for its ability to degrade lignin and subsequently confirmed to be able to depolymerize heterogeneous humic substance (HS), a main component of soil organic matter. The draft genome sequences of PAMC 29040 were analyzed to discover the putative genes for depolymerization of polymeric HS (e.g., dye-decolorizing peroxidase) and catabolic degradation of HS-derived small aromatics (e.g., vanillate O-demethylase). The information on degradative genes will be used to finally propose the HS degradation pathway(s) of soil bacteria inhabiting cold environments.

Monitoring of Changes in Molecular Weight Distribution and Fluorescence Properties of Dissolved Matter (DOM) in Water Treatment Processes (정수처리공정 중 자연유기물질의 분자량 분포 및 형광특성 변화 모니터링)

  • Park, Min-Hye;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.843-849
    • /
    • 2007
  • Monitoring of NOM characteristics is important for improving removal efficiency of natural organic matter (NOM) in water treatment processes. In this study, several NOM characteristics, which include specific UV absorbance (SUVA), total carbonate content, molecular weight distribution, and fluorescence properties, were measured using samples collected from a pilot-scale water treatment plant consisting of coagulation/flocculation (C/F), filtration, ozonation and granular activated carbon (GAC) processes. The highest removal of NOM was observed in C/F and filtration processes as demonstrated by the reduction of dissolved organic carbon (DOC) by 25% and 21%, respectively. Despite nearly no change in DOC, however, the lowest SUVA value and the highest total carbohydrate content were observed in the sample from ozonation process. This indicates that non-degradable aromatic compounds become depleted and biodegradable organic compounds are enriched during the process. Comparison of synchronous fluorescence spectra of the samples showed that ozoation process increased protein-like fluorescence while it decreased fulvic-like and terrestrial humic-like fluorescence. Consistently, a slight peak of protein-like fluorescence was observed in the sample from ozonation process. The greatest change in molecular weight distributions of the samples was observed in C/F process. Comparison of size exclusion chromatogram of the samples revealed that NOM fractions with the molecular weight greater than 2000 Da were reduced by over 90% after C/F process. SUVA values and total carbohydrate content of the samples were well correlated with a ratio of protein-like fluorescence and terrestrial humic-like fluorescence intensities with the correlation coefficients of 0.99 and 0.91, respectively. This suggests that synchronous fluorescence properties of NOM could be used as useful tolls for monitoring changes of some NOM characteristics during water treatment processes.

Humic Acid and Synthesized Humic Mimic Promote the Growth of Italian Ryegrass

  • Khaleda, Laila;Kim, Min Gab;Kim, Woe-Yeon;Jeon, Jong-Rok;Cha, Joon-Yung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • Humic acid (HA) is a complex organic matter found in the environments, especially in grassland soils with a high density. The bioactivity of HA to promote plant growth depends largely on its extraction sources. The quality-control of HA and the quality improvements via an artificial synthesis are thus challenging. We recently reported that a polymeric product from fungal laccase-mediated oxidation of catechol and vanillic acid (CAVA) displays a HA-like activity to enhance seed germination and salt stress tolerance in a model plant, Arabidopsis. Here, we examined whether HA or CAVA enhances the growth of Italian ryegrass seedling. Height and fresh weight of the plant with foliar application of HA or CAVA were bigger than those with only water. Interestingly, enhanced root developments were also observed in spite of the foliar treatments of HA or CAVA. Finally, we proved that HA or CAVA promotes the regrowth of Italian ryegrass after cutting. Collectively, CAVA acts as a HA mimic in Italian ryegrass cultivation, and both as a biostimulant enhanced the early growth and regrowth after cutting of Italian ryegrass, which could improve the productivity of forage crops.

Studies on the Physico-chemical Properties and Characterization of Soil Organic Matter in Jeju Volcanic Ash Soil (제주도(濟州道) 화산회토양(火山灰土壌)의 이화학적(理化学的) 특성(特性) 및 유기물(有機物) 성상(性状)에 관(関)한 연구(硏究))

  • Lee, Sang-Kyu;Cha, Kyu-Seuk;Kim, In-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.20-27
    • /
    • 1983
  • A series of laboratory experiment was conducted to find out the chemical composition, characterization of humic substances by physical and chemical methods and reaction of Na-pyrophosphate, $Ca(OH)_2$ and rice straw with albumin on the degradation of soil organic matter in the volcanic ask soils of the Jeju Island. Results obtained were summarized as follows: 1. The contents of organic matter, available silicon, active iron and aluminum concentration in volcanic ash the soils were remarkably higher but available phosphorous was comparatively lower than the mineral soils. In volcanic ash soil, the contents of potassium, calcium and magnessium were higher in upland soil than that of forest soil. The ratios of active $Al^{{+}{+}{+}}/Fe^{{+}{+}}$, C/P and $K/Ca^+$ Mg were apparently high in volcanic ash soils while that of $SiO_2$/O.M. was high in mineral soil. 2. The carbon/nitrogen ratio in humin, humic acid content in organic matter, and carbon contents of humin in total carbon of soil organic matter were apparently higher in the volcanic ash soils than in the mineral soils, The total nitrogen and fractions of acid or alkali soluble nitrogen were remarkably high in volcanic ash soils while mineralizable nitrogen ($NH_4$-N and $NO_3$) contents were high in mineral soils. 3. The values of K600, RF and log K were also higher in volcanic ash soils than those in mineral soils, and the absorbance in the visible range were high and color was dark in the soil of which humification was progressed Extracted humic acid from volcanic ash soil was less reactive to the oxidizing chemical reagent and was persistance to the acid or alkali hydrolysises. 4. The major oxygen-containing functional groups in humic substances of volcanic ash soils were phenolic-OH alcoholic-OH and carboxyl groups while those in mineral soil were methoxyl and carbonyl groups. 5. Absorption spectra of alkaline solution of humic acid ranged from 200 nm to maxima 500 nm. Visible spectra peaks of from humic substances in the visible region were recognized at 350, 420, 450 and 480 nm. Only one single absorbance peak was observed in the visible region at 362 nm for Heugag series and two absorbance Peak were also at 360 nm and 390 nm for Yeungrag series. 6. Evolution of carbon as $Co_2$ was increased with addition of Na-pyrophosphate in Namweon and Heugag series, and "priming effects" took place on the soil organic matter decomposition by addition of rice straw with albumin in Ido series.

  • PDF

Ion Exchange Processes: A Potential Approach for the Removal of Natural Organic Matter from Water

  • Khan, Mohd Danish;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-80
    • /
    • 2018
  • Natural organic matter (NOM) is among the most common pollutant in underground and surface waters. It comprises of humic substances which contains anionic macromolecules such as aliphatic and aromatic compounds of a wide range of molecular weights along with carboxylic, phenolic functional groups. Although the concentration of NOM in potable water usually lies in the range of 1-10 ppm. Conventional treatment technologies are facing challenge in removing NOM effectively. The main issues are concentrated to low efficiency, membrane fouling, and harmful by-product formation. Ion-exchangers can be considered as an efficient and economic pretreatment technology for the removal of NOM. It not only consumes less time for pretreatment but also resist formation of trihalomethanes (THMs), an unwanted harmful by-product. This article provides a comprehensive review of ion exchange processes for the removal of NOM.