• Title/Summary/Keyword: human-to-human (H2H)

Search Result 3,629, Processing Time 0.037 seconds

Effect of Acidic Environment on the Push-Out Bond Strength and Surface Morphology of Tricalcium Silicate Materials (산성 환경이 Tricalcium Silicate 재료의 압출강도와 표면형태에 미치는 영향)

  • Park, Misun;Kim, Jaehwan;Choi, Namki;Kim, Seonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • The aim of this study was to evaluate the effect of a range of acidic pH values on the push-out bond strength and surface morphology of tricalcium silicate materials: Biodentine$^{(R)}$, Theracal$^{(R)}$ and ProRoot MTA$^{(R)}$. The standardized lumens of root slices prepared from extracted single-root human teeth were filled with Biodentine$^{(R)}$, Theracal$^{(R)}$ and ProRoot MTA$^{(R)}$ according to manufacturer's instructions. The specimens were randomly divided into 4 groups (n = 20) for each material and then incubated for 4 days at $37^{\circ}C$; 3 acidic groups (butyric acid buffered at pH 4.4, 5.4, 6.4) and 1 control group (phosphate buffered saline solution at pH 7.4). The push-out bond strengths were then measured by using a universal testing machine and the surface morphology of each experimental group was analyzed by a scanning electron microscope. Biodentine$^{(R)}$ and Theracal$^{(R)}$ showed higher push-out bond strength compared with ProRoot MTA$^{(R)}$ after exposure to acidic pH values. A substantial change in the surface morphology of each material occurred after exposure to different pH values. In conclusion, the push-out bond strengths of Biodentine$^{(R)}$ and Theracal$^{(R)}$ are higher than the ProRoot MTA$^{(R)}$. Further the acidic environment weakens the push-out bond strength and microstructure of tricalcium silicate materials.

Changes in the Training Conditions of Residents by Enforcement of Medical Residents Act (전공의법 시행에 따른 전공의 수련환경 변화)

  • Oh, Su-Hyun;Kim, Jin-Suk
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.427-434
    • /
    • 2019
  • The Medical Residents Act was enacted in December 2016 to protect the rights of residents, and to ensuring the safety of patients, and nurturing good medical human resources. This study analyzed the changes of training conditions according to the enforcement of The Medical Residents Act by comparing the results of two surveys conducted in 2015(1,793 Residents) and 2017(1,768 Residents). As a result, Residents worked over 80 hours per week on average('15=92.4h, '17=87.3h) and they worked twice as many times as 36 hours('15=89.4h, '17=70.1h). Female residents' leave before and after childbirth('15=78.5day, '17=82.2day), Preparation of Standard training contract('15=19.3%, '17=40.8%), Delivery of training contract('15=12.4%, '17=36.1%) did not comply with the regulations. The training conditions of the residents is directly related to the safety of patients and the public's health. National support is needed for the support of substitute workforces, fair training evaluation conditions and incentives based on the evaluation results, labor costs for residents and supervising medical specialists, and the cost of making training programs.

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

Growth and Osteoblastic Differentiation of Mesenchymal Stem Cells on Silk Scaffolds

  • Cho, Hee-Yeon;Baik, Young-Ae;Jeon, Suyeon;Kwak, Yoon-Hae;Kweon, Hae Yong;Jo, You Young;Lee, Kwang Gill;Park, Young Hwan;Kang, Dongchul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.303-311
    • /
    • 2013
  • In this study, we compared the efficiency of osteoblast differentiation media (ODM) containing three distinct reagent combinations in osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in monolayer culture. In addition, we analyzed growth and differentiation of hBMSCs on silk scaffolds and examined the bone-forming activity of a nanofibrous silk scaffold in a tibia diaphysis defect model of a rat hind limb with intramedullary nailing. Although all three ODM increased alkaline phosphatase activity to a comparable extent, the ODM containing bone morphogenetic protein-2 (BMP-2) was found to be significantly less effective in promoting mineral deposition than the others. Growth of hBMSCs on sponge-form silk scaffolds was faster than on nanofibrous ones, while osteoblastic differentiation was apparent in the cells grown on either type of scaffold. By contrast, bone formation was observed only at the edge of the nanofibrous scaffold implanted in the tibia diaphysis defect, suggesting that use of the silk scaffold alone is not sufficient for the reconstitution of the long bone defect. Since silk scaffolds can support cell growth and differentiation in vitro, loading MSCs on scaffolds might be necessary to improve the bone-forming activity of the scaffold in the long bone defect model.

Purification and characterization of antifungal compounds produced by Bacillus subtilis KS1 (Bacillus subtilis KS1이 생산하는 항진균물질의 정제 및 특성)

  • Ryoo, Sung-Woo;Maeng, Hack-Young;Maeng, Pil-Jae
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.293-304
    • /
    • 1996
  • A bacterial strain, KSl, possessing strong antifungal activity was isolated from soil samples of ginseng fields and identified as Bacillus subtilis. In greenhouse test, the culture filtrate of B. subtilis KS1 showed strong protective effect against several fungal diseases of agricultural plants such as cucumber gray mold and wheat leaf rust. In addition, the crude butanol fraction of the culture filtrate exhibited antagonistic effect against several fungi including plant or human pathogens, such as Botrytis maydis, Chytridium lagenarium and Candida albicans. The antifungal compound, SW1, produced by B. subtilis KS1 was purified through consecutive chromatographic separations on a pep-RPC column and a ${\mu}$ Bondapak $C_{18}$ reverse phase column. Temperature and pH showed little effect on the stability of the compound in the ranges $-20-121^{\circ}C$ and pH 4.0-10.0, respectively. The composition and structural characteristics of SW1 were analysed by HPLC and by $^1H-,\;^1H-^1H-COSY$, NOESY, COSY-NOESY and HOHAHA NMR spectroscopy, respectively, which revealed that the compound belongs to iturin A, a typical cyclic antifungal compound produced by B. subtilis. In contrast to the previously reported iturin A compounds which have one or no $-CH_3$ side chain in the hydrophobic hydrocarbon chain of ${\beta}-amino$ acids, SW1 was shown to have a ${\beta}-amino$ acid containing 12-carbon skeleton with two $-CH_3$ side chains.

  • PDF

A New Formulation of Controlled Release Amitriptyline Pellets and Its In Vivo/In Vitro Assessments

  • Park, Eun-Seok;Lee, Dong-Soo;Kwon, Seok-Young;Chi, Sang-Cheol
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.569-574
    • /
    • 2003
  • Controlled-release amitriptyline pellets (ATP) were formulated and its oral bioavailability was assessed in human volunteers after oral administration under fasting conditions. Core pellets were prepared using a CF granulator by two different methods (powder layering and solvent spraying) and coated with Eudragit RS or RL 100. Physical characteristics and dissolution rates of core pellets and coated pellets were evaluated to optimize the formulation. Powder layering method resulted in a better surface morphology than solvent spraying method. However, physical properties of the products were poorer when prepared by powder layering method with respect to hardness, friability and density. The dissolution profile of amitriptyline coated with Eudragit RS 100 was comparable to that of commercially available amitriptyline enteric-coated pellets ($Saroten^{\circledR}$ retard). After the oral administration of both products at the dose of 50 mg, the mean maximum concentrations ($C_{max}$) were 36.4 and 29.7 ng/mL, and the mean areas under the concentration-time curve ($AUC_{0-96}$) were 1180.2 and 1010.7 ng.h/mL for ATP and Saroten retard, respectively. The time to reach the maximum concentrations ($T_{max}$) was 6 h for both formulations. Statistical evaluation suggested that ATP was bioequivalent to Saroten retard.

Inhalation Exposure to Nickel Hydroxide Nanoparticles Induces Systemic Acute Phase Response in Mice

  • Kang, Gi-Soo;Gillespie, Patricia Anne;Chen, Lung-Chi
    • Toxicological Research
    • /
    • v.27 no.1
    • /
    • pp.19-23
    • /
    • 2011
  • It has been proposed that acute phase response can be a mechanism by which inhaled particles exert adverse effects on the cardiovascular system. Although some of the human acute phase proteins have been widely studied as biomarkers of systemic inflammation or cardiovascular diseases, there are only a few studies that investigated the role of serum amyloid P (SAP), a major acute phase protein in mice. In this study, we investigated the changes in SAP, following inhalation exposure to nickel hydroxide nanoparticles (nano-NH). We conducted 1) acute (4 h) exposure to nano-NH at 100, 500, and $1000\;{\mu}g/m^3$ and 2) sub-acute (4h/d for 3d) exposure at $1000\;{\mu}g/m^3$, then measured serum SAP protein levels along with hepatic Sap mRNA levels. The results show that inhaled nano-NH can induce systemic acute phase response indicated by increased serum SAP levels and hepatic Sap mRNA levels. To the best of our knowledge, this is the first study showing induction of SAP in response to repeated particle exposure, and the results suggest that SAP can be used as a biomarker for systemic inflammation induced by inhaled particles.

Three-dimensional structural design based on cellular automata simulation

  • Kita, E.;Saito, H.;Tamaki, T.;Shimizu, H.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.29-42
    • /
    • 2006
  • This paper describes the design scheme of the three-dimensional structures based on the concept of the cellular automata simulation. The cellular automata simulation is performed according to the local rule. In this paper, the local rule is derived in the mathematical formulation from the optimization problem. The cell density is taken as the design variable. Two objective functions are defined for reducing the total weight of the structure and obtaining the fully stressed structure. The constraint condition is defined for defining the local rule. The penalty function is defined from the objective functions and the constraint condition. Minimization of the penalty function with respect to the design parameter leads to the local rule. The derived rule is applied to the design of the three-dimensional structure first. The final structure can be obtained successfully. However, the computational cost is expensive. So, in order to reduce the computational cost, the material parameters $c_1$ and $c_2$ and the value of the cell rejection criterion (CRC) are changed. The results show that the computational cost depends on the parameters and the CRC value.

Preparation of CdSe QDs-carbohydrate Conjugation and its Application for HepG2 Cells Labeling

  • Jiang, Mingxing;Chen, Yan;Kai, Guiqing;Wang, Ruijun;Cui, Huali;Hu, Meili
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.571-574
    • /
    • 2012
  • In present study, CdSe quantum dots (QDs) were prepared with a novel but simple, effective and exercisable method. Nine different types of carbohydrate molecules were used to modify CdSe QDs. D-mannose (Man)-coated quantum dots were prepared for labeling human hepatoma (HepG2) cells, because of the high expression of mannose receptor (MR) on HepG2 cells. The uptake characteristics of CdSe QDs-Man were investigated in HepG2 cells. The absorption rate result of MTT assay in 48 h suggested the extremely low cytotoxicity of CdSe QDs-Man. The presence of quantum dots was confirmed with fluorescence microscopy. These results were encouraging regarding the application of QDs molecules for early detection of HepG2 cells.

Effect of interleukin-2 on antitumor response against intraperitoneal RD-995 tumor in mice (마우스에서 Interleukin-2가 RD-995 종양세포에 미치는 항암효과)

  • 권오덕
    • Korean Journal of Veterinary Service
    • /
    • v.25 no.3
    • /
    • pp.309-314
    • /
    • 2002
  • Recombinant interleukin-2(IL-2) has demonstrated as an antineoplastic agent in mice and human, but the relatively low response rates observed in clinical trials. Therefore, the present study was undertaken in order to evaluate therapeutic activities of IL-2 for the establishment of therapeutic applications. At the onset of the experiment, normal C3H/HeN mice were injected with 5$\times$10$\^$6/ RD-995 tumor cells, murine ultraviolet radiation-induced fibrosarcoma, intraperitoneally. Beginning on day 6, experimental groups were treated with a 5-day course of IL-2(subcutaneous injection of 30,000 IU every 12 hours for 5 days). The result of this experiment revealed that body weight gradually decreased from 20th day in control mice. Subcutaneous IL-2 therapy prevented partially decrease body weight, and prolonged survival of mice compared with control group.