• Title/Summary/Keyword: human-like walking

Search Result 55, Processing Time 0.022 seconds

A comparative study on different walking load models

  • Wang, Jinping;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.847-856
    • /
    • 2017
  • Excessive vibrations can occur in long-span structures such as floors or footbridges due to occupant?s daily activity like walking and cause a so-called vibration serviceability issue. Since 1970s, researchers have proposed many human walking load models, and some of them have even been adopted by major design guidelines. Despite their wide applications in structural vibration serviceability problems, differences between these models in predicting structural responses are not clear. This paper collects 19 popular walking load models and compares their effects on structure?s responses when subjected to the human walking loads. Model parameters are first compared among all these models including orders of components, dynamic load factors, phase angles and function forms. The responses of a single-degree-of-freedom system with various natural frequencies to the 19 load models are then calculated and compared in terms of peak values and root mean square values. Case studies on simulated structures and an existing long-span floor are further presented. Comparisons between predicted responses, guideline requirements and field measurements are conducted. All the results demonstrate that the differences among all the models are significant, indicating that in a practical design, choosing a proper walking load model is crucial for the structure?s vibration serviceability assessment.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

Real-Time CoM/ZMP Trajectory Transformation Method for Humanoid Robots Considering Structure Characteristics (구조 특성을 반영한 인간형 로봇을 위한 실시간 CoM/ZMP 궤적 변환 방법)

  • Hong, Seok-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2017
  • This paper proposes a transformation method of the zero moment point (ZMP) and the center of mass (CoM) from one walking pattern to other patterns by considering the structure of a robot or walking situations in real time. In general, a humanoid robot has own structure characteristics like height and mass. The structure characteristics make the given CoM/ZMP walking pattern of one human or one humanoid robot to be difficult to apply to other robot directly. For this purpose, we analyze the characteristics of walking patterns according to the step length, duration of walking support phase and the CoM height by using the cart-table model as the simple humanoid robot model. A transformation equation is derived from the analyzation and it is verified with simulation.

Vibration Control of a Knee Joint System considering Human Vibration of the New R.G.O. for a Rehabilitation Trainning of Paraplegia (II) (척수마비환자 재활훈련용 보행보조기의 인체진동을 고려한 무릎관절 시스템 진동제어(II))

  • Kim, Myung-Hoe;Jang, Dae-Jin;Baek, Yun-Soo;Park, Young-Pil;Park, Chang-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.446-452
    • /
    • 2002
  • This paper Presents a 3-D design and a Vibration control of a new walking R.G.O.(Robotic Gait Orthosis) and would like to develop a simulation by this walking system. The vibration control and evaluation of the new knee joint mechanism on the biped walking R.G.O.(Robotic Gait Orthosis) was a very unique system and was to obtain by the 3-axis accelerometer with a low frequency vibration for the paraplegia It will be expect that the spinal cord injury patients are able to recover effectively by a biped walking R.G.O.. The new knee joint system of both legs were adopted with a good kinematic characteristics. It was designed attached a DC-srevo motor and controller, with a human wear type. It was able to accomodate itself to a environments of S.C.I. Patients. It will be expect that the spinal cord injury patients are able to recover effectively by a new walking R.G.O. system.

  • PDF

Vertical Limb Stiffness Increased with Gait Speed in the Elderly (노인군 보행 속도 증가에 따른 하지 강성 증가)

  • Hong, Hyun-Hwa;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.687-693
    • /
    • 2011
  • Spring-mass models have been widely accepted to explain the basic dynamics of human gait. Researchers found that the leg stiffness increased with gait speed to increase energy efficiency. However, the difference of leg stiffness change with gait speed between the young and the elderly has not been verified yet. In this study, we calculated the lower limb stiffness of the elderly using walking model with an axial spring. Vertical stiffness was defined as the ratio of the vertical force change to the vertical displacement change. Seven young and eight elderly subjects participated to the test. The subjects walked on a 12 meter long, 1 meter wide walkway at four different gait speeds, ranging from their self-selected speed to maximum speed randomly. Kinetic and kinematic data were collected using three force plates and motion capture cameras, respectively. The vertical stiffness of the two groups increased as a function of walking speed. Maximum walking speed of the elderly was slower than that of the young, yet the walking speed correlated well with the optimal stiffness that maximizes propulsion energy in both groups. The results may imply that human may use apparent limb stiffness to optimize energy based on spring-like leg mechanics.

The Implementation of Human-Interactive Motions for a Quadruped Robot Using Genetic Algorithm (유전알고리즘을 이용한 사족 보행로봇의 인간친화동작 구현)

  • Kong, Jung-Shick;Lee, In-Koo;Lee, Boo-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.665-672
    • /
    • 2002
  • This paper deals with the human-interactive actions of a quadruped robot by using Genetic Algorithm. In case we have to work out the designed plan under the special environments, our robot will be required to have walking capability, and patterns with legs, which are designed like gaits of insect, dog and human. Our quadruped robot (called SERO) is capable of not only the basic actions operated with sensors and actuators but also the various advanced actions including walking trajectories, which are generated by Genetic Algorithm. In this paper, the body and the controller structures are proposed and kinematics analysis are performed. All of the suggested motions of SERO are generated by PC simulation and implemented in real environment successfully.

Analysis of Stable Walking Pattern of Biped Humanoid Robot: Fuzzy Modeling Approach (이족 휴머노이드 로봇의 안정적인 보행패턴 분석: 퍼지 모델링 접근방법)

  • Kim Dongwon;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.376-382
    • /
    • 2005
  • In this paper, practical biped humanoid robot is presented, designed, and modeled by fuzzy system. The humanoid robot is a popular research area in robotics because of the high adaptability of a walking robot in an unstructured environment. But owing to the lots of circumstances which have to be taken into account it is difficult to generate stable and natural walking motion in various environments. As a significant criterion for the stability of the walk, ZMP (zero moment point) has been used. If the ZMP during walking can be measured, it is possible for a biped humanoid robot to realize stable walking by a control method that makes use of the measured ZMP. In this study, measuring the ZMP trajectories in real time situations throughout the whole walking phase on the flat floor and slope are conducted. And the obtained ZMP data are modeled by fuzzy system to explain empirical laws of the humanoid robot. By the simulation results, the fuzzy system can be effectively used to model practical humanoid robot and the acquired trajectories will be applied to the humanoid robot for the human-like walking motions.

Analysis of Gait Characteristics of Walking in Various Emotion Status (다양한 감정 상태에서의 보행 특징 분석)

  • Dang, Van Chien;Tran, Trung Tin;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.477-481
    • /
    • 2014
  • Human has various types of emotions which affect speculation, judgement, activity, and the like at the moment. Specifically, walking is also affected by emotions, because one's emotion status can be easily inferred by his or her walking style. The present research on biped walking with humanoid robots is mainly focused on stable walking irrespective of ground condition. For effective human-robot interaction, however, walking pattern needs to be changed depending on the emotion status of the robot. This paper provides analysis and comparison of gait experiment data for the men and women in four representative emotion states, i.e., joy, sorrow, ease, and anger, which was acquired by a gait analysis system. The data and analysis results provided in this paper will be referenced to emotional biped walking of a humanoid robot.

Stable Biped Walking by Trunk and Waist Motion

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.85.2-85
    • /
    • 2002
  • If a biped humanoid robot walks stably on even and uneven planes like a human being, it should have a control system capable of compensating for moments generated by motions of its lower-limbs, upper-limbs and head. In this paper, a compensatory motion control method is described for the stability of biped humanoid robots. This control method calculates the combined motion of the trunk and the waist that cancels the generated moments by using an iteration algorithm. During the biped walking, the combined motion is employed only for stability while the motion of the lower-limbs is used only for locomotion. This method is useful for not only a steady walking but also a transient walking. The e...

  • PDF

Analysis of Human Activity Using Motion Vector and GPU (움직임 벡터와 GPU를 이용한 인간 활동성 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1095-1102
    • /
    • 2014
  • In this paper, We proposed the approach of GPU and motion vector to analysis the Human activity in real-time surveillance system. The most important part, that is detect blob(human) in the foreground. We use to detect Adaptive Gaussian Mixture, Weighted subtraction image for salient motion and motion vector. And then, We use motion vector for human activity analysis. In this paper, the activities of human recognize and classified such as meta-classes like this {Active, Inactive}, {Position Moving, Fixed Moving}, {Walking, Running}. We created approximately 300 conditions for the simulation. As a result, We showed a high success rate about 86~98%. The results also showed that the high resolution experiment by the proposed GPU-based method was over 10 times faster than the cpu-based method.