• Title/Summary/Keyword: human tissue

Search Result 2,289, Processing Time 0.026 seconds

The Effect of Educational Intervention of Human Tissue Donation on Nurses' Knowledge, Attitudes and Self-efficacy (인체조직기증에 관한 교육 중재가 간호사의 지식, 태도, 교육 관련 자기효능감에 미치는 효과)

  • Oh, Hyun Soo;Park, Min Ae
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.25 no.2
    • /
    • pp.206-215
    • /
    • 2019
  • Purpose: This study was conducted to examine the effects of an intervention program for human tissue donation with nurses, modified from the Korea Foundation for Human Tissue Donation, to promote human tissue donation via nurses' knowledge and attitudes toward human tissue donation, and self-efficacy for teaching tissue donation. Methods: A non-equivalent control group quasi-experimental design was adopted, and data were collected from 82 nurses (41 of each group: experimental and comparison) working at a general hospital in Inchon, South Korea. Results: In a multivariate analysis (MANOVA), the integrative effect on outcome variables from the intervention program was statistically significant (p<.001). Accordingly, an ANOVA was performed to determine which individual outcome variable showed a significant effect with intervention, and it was found that the effects of intervention on all the outcome variables (knowledge and attitude, and self-efficacy for teaching human tissue donation) were significant (p<.001). Conclusion: The results of the study showed that the intervention had positive effects on knowledge and attitudes toward tissue donation, and self-efficacy for teaching tissue donation among nurses. These outcome variables derived from the intervention might be essential for eliciting positive behavior toward human tissue donation.

Current Status of Face Transplantation: Where Do We Stand in Korea? (안면이식에 대한 최근 동향: 한국에서의 안면이식은 어떤 단계에 있는가?)

  • Hong, Jong Won;Kim, Young Seok;Yun, In Sik;Lee, Dong Won;Lee, Won Jai;Roh, Tai Suk;Lew, Dae Hyun;Kim, Yong Oock;Rah, Dong Kyun;Tark, Kwan Chul;Yun Park, Be-Young
    • Archives of Craniofacial Surgery
    • /
    • v.13 no.2
    • /
    • pp.85-94
    • /
    • 2012
  • The world's first face transplantation was performed in France, in 2005. Since then, 21 cases of face transplantation have been performed. Face transplantation is one of the most prominent part of composite tissue allotransplantation (CTA) along with hand transplantation. Since these fields are not deal with life-saving organs, there are many arguments about immunosuppression therapy. Recent paradigm of face transplantation shows that surgical ranges are expanded from partial face transplantation to full face transplantation. Most immunosuppression protocols are triple therapy, which consists of tacrolimus (FK-506), mycophenolate mofetil and prednisolone. Anatomical researches, immunosuppression, and immunotolerance take great parts in the researches of CTA. The medical fields directly related to face transplantation are microsurgery, immunology, and transplantation. Nowadays, each field is performed widely. Therefore people, even medical teams think face transplantation could be easily realized, sooner or later. But there are lots of things that should be prepared for not only practice and immunosuppression therapy but also for the cooperation with relevant fields. That's the reason why only 21 cases of face transplantation have been done, while more than 70 cases of hand transplantation have been done in the past years. Especially in Korea, brain death patients are not enough even for organ transplantation and furthermore there are some troubles in taking part in the society of transplantation. Face transplantation has lots of problems concerning variable medical fields, administration, society, ethics, and laws. Therefore, for the realization of face transplantation in Korea, not only medical skills but also political powers are needed.

Engineered human cardiac tissues for modeling heart diseases

  • Sungjin Min;Seung-Woo Cho
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.32-42
    • /
    • 2023
  • Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-on-a-chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed.

Characteristics of adhesion areas between the tissue expander and capsule in implant-based breast reconstruction

  • Lim, Yoon Min;Park, Kwang Hyun;Lee, Dong Won;Lew, Dae Hyun;Roh, Tai Suk;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • v.46 no.4
    • /
    • pp.330-335
    • /
    • 2019
  • Background The use of anatomic implants has improved the aesthetic results of breast surgery; however, implant malrotation is an uncommon, but serious complication of these procedures. Nevertheless, little research has explored implant adhesion. In this study, we investigated adhesion between the expander and the capsule. Methods Seventy-nine cases of immediate breast reconstruction via two-stage implant-based reconstruction performed between September 2016 and November 2017 were evaluated. Mentor CPX4 expanders were used in 14 breasts, and Natrelle expanders in 65. We analyzed areas of adhesion on the surfaces of the tissue expanders when they were exchanged with permanent implants. We investigated whether adhesions occurred on the cephalic, caudal, anterior, and/or posterior surfaces of the expanders. Results Total adhesion occurred in 18 cases, non-adhesion in 15 cases, and partial adhesion in 46 cases. Of the non-adhesion cases, 80% (n=12) were with Mentor CPX4 expanders, while 94.4% (n=17) of the total adhesion cases were with Natrelle expanders. Of the partial adhesion cases, 90.7% involved the anterior-cephalic surface. The type of tissue expander showed a statistically significant relationship with the number of attachments in both univariate and multivariate logistic regression analyses (P<0.001) and with total drainage only in the univariate analysis (P=0.015). Conclusions We sought to identify the location(s) of adhesion after tissue expander insertion. The texture of the implant was a significant predictor of the success of adhesion, and partial adhesion was common. The anterior-cephalic surface showed the highest adhesion rate. Nevertheless, partial adhesion suffices to prevent unwanted rotation of the expander.

Does acellular dermal matrix expand in response to tissue expander inflation?

  • Yang, Chae Eun;Park, Kwang Hyun;Lee, Dong Won;Lew, Dae Hyun;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • v.46 no.1
    • /
    • pp.34-38
    • /
    • 2019
  • Background Acellular dermal matrices (ADMs) have recently become widely used in breast reconstruction, but the correlation between the final expander volume and the surface area of the ADM is not well understood. In this study, the expansion of the surface area of ADM and the expander volume was studied retrospectively in cases of acellular dermis-assisted tissue expander breast reconstruction. Methods Twenty cases of immediate breast reconstruction using an ADM-assisted tissue expander from January 2015 to December 2015 were evaluated. In all 20 cases, CGCryoDerm was used as the matrix, with a thickness of 1-3 mm. No slit incisions were made. Finally, the proportional increase in the area of the fully expanded ADM was compared to that of the tissue expander volume. Results The proportional increase in the ADM surface area was calculated to be from 1.1 to 2.46, with a mean value of 1.7. Additionally, under the assumption that the expander had a spherical shape, the increase in its radius (the cube root of its volume) was assessed. The range of the proportional increase in the expander radius was 1.1 to 2.24, with a mean value of 1.66. The proportional increase in the radius of the expanded ADM surface area ranged from 1.04 to 1.34, with a mean ratio of 1.28. Conclusions The results of this study confirmed that the ADM expanded when the tissue expander was inflated. However, the ADM expanded to a lesser extent than the tissue expander, indicating that the muscle and other tissues expanded more than the ADM when the tissue expander was inflated.

An Efficient Method for Production of Extracellular Human Tissue Factor in Escherichia coli (인간조직인자 세포외 부분의 효과적인 제조 방법)

  • Yoo, Hwan-Goo;Park, Yang-Jin;Lee, Woo-Yiel
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.561-565
    • /
    • 2009
  • Human Tissue factor is an essential enzyme activator that forms a catalytic complex with factor VII/ VIIa, and catalyzes both the extrinsic and intrinsic blood coagulation cascades. The extracellular domain of human tissue factor is responsible for association with the biological partner. The efficient procedures for preparing biologically active human tissue factor are essential for the preclinical and clinical studies with coaguligands. An expression vector in Escherichia coli has been constructed to direct the production of extracellular human tissue factor without a fusion protein or a $His_6$ at the N-terminus. The recombinant human tissue factor was expressed in large amounts as a non-native state in E. coli. The recombinant protein was simply renatured during the DEAE-sephacel chromatographic purification procedure. Our expression and purification system does not require a protease treatment or an additional chromatographic step to remove a fusion contaminant, which provides a very useful alternative to conventional expression systems for the production of human tissue factor.

Construction of Artificial Epithelial Tissues Prepared from Human Normal Fibroblasts and C9 Cervical Epithelial Cancer Cells Carrying Human Papillomavirus Type 18 Genes

  • Eun Kyung Yang;Seu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • One cervical cancer cell line, C9, carrying human papillomavirus type 18 (HPV18) genes that is one of the major etiologic concoviruses for cervical cancer was characterized. This cell line was further characterized for its capacity related to the epithelial cell proliferation, stratification and differentiation in reconstituted artificial epithelial tissue. The in vitro construction of three dimensional artificial cervical opithelial tissue has been engineered using C9 epithelial cancer cells, human foreskin fibroblasts and a matrix made of type I collagen by organotypic culture of epithelial cells. The morphology of paraffin embedded artificial tissue was examined by histochemical staining. The artificial epithelial tissues were well developed having multilayer. However, the tissue morphology was similar to the cervical tissus having displasia induced by HPV infection. The characteristics of the artificial tissues were examined by determinining the expression of specific marker proteins. In the C9 derived artificial tissues, the expression of EGF receptor, as epithelial proliferation marker proteins for stratum basale was observed up to the stratum spinosum. Another epithelial proliferation marker for stratum spinosum, cytokerations 5/6/18, were observed well over the stratum spinosum. For the differentiation markers, the expression of involucrin and filaggrin were observed while the terminal differentiation marker, cytokeratins 10/13 was not detected at all. Therefore the reconstituted artificial epithelial tissues expressed the same types of differentiation marker proteins that are expressed in normal human cervical epithelial tissues but lacked the final differentiation capacity representing characteristics of C9 cell line as a cancer tissue devived cell line. Expression of HPV18 E6 oncoprotein was also observed in this artifical cervical opithelial tissue though the intensity of the staining was weak. Thus this artificial epithelial tissue could be used as a useful model system to examine the relationship between HPV-induced cervical oncogenesis and epithelial cell differentiation.

  • PDF

Evaluation of the Various Artificial Skin Substitutes Implanted onto Nude Mice (누드마우스를 이용한 다양한 피부 대체물의 성능비교)

  • Lee, Won Jai;Lee, Dong Won;Hur, Jae Young;Lee, Young Dae;Park, Beyoung Yun;Rah, Dong Kyun
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.127-133
    • /
    • 2008
  • Purpose: The purpose of this study is to evaluate the remodeling process of the various skin substitutes in 4th and 6th weeks following the transplantation when transplanted onto nude mice. Methods: Three types of artificial skin substitutes, such as PLGA scaffold with keratinocyte sheets(group 1), acellular human dermis($Surederm^{(TM)}$) and keratinocyte sheet(group 2), bioengineered skin($Neoderm^{(TM)}$)(group 3), were applied to the wound on nude mice. All mice were killed in 2, 4 weeks and/or 6 weeks after grafting and tissue samples were harvested from the back of mice. The changes in wound size, degree of angiogenesis, formation of basement membrane and epidermis, density of collagen fibers and neural restoration were examined. Results: There was no significant changes in wound size among the three groups. However, the size of wound decreased in the non-substituted group due to contracture. Degree of angiogenesis and systhesis of collagen or neurofilaments were mostly increased in bioengineered skin($Neoderm^{(TM)}$)(group 3), followed by acellular human dermis($Surederm^{(TM)}$) and keratinocyte sheet(group 2), PLGA scaffold with keratinocyte sheets (group 1). However, group 3 and group 2 showed similar thickness of basement membrane and epidermis. Conclusion: We found that degree of angiogenesis, formation of basement membrane and skin appendages, density of collagen fibers and neurofilaments can be the categories to evaluate the success of artificial skin substitution in early stages.