• Title/Summary/Keyword: human pressure

Search Result 1,117, Processing Time 0.029 seconds

Effects of Body Postures on Garment Pressure in Daily Wear (평상복 착용시 인체의 자세가 의복압에 미친 영향)

  • Kim, Yang-Weon
    • Korean Journal of Human Ecology
    • /
    • v.13 no.1
    • /
    • pp.153-158
    • /
    • 2004
  • With considerable development of comfortable and functional clothing in recent years, we need to evaluate the effects of garment pressure in daily wear on each parts of human body because the garment pressure is important to design the clothing. This study was designed to examine the effects of body postures on garment pressure on each parts of human body in the actual clothing conditions. All the data were collected from 50 volunteered subjects. The Garment pressure was measured in lune and December with 8 points CPMS clothing pressure system from scapular, upper am, elbow, under arm, front waist line, side waist line, abdomen, crista ilica, upper hip, middle hip, front thigh, back thigh, front knee and back knee. The postures of subjects were controlled with 3 positions such as standing (posture 1), sitting on the chair (posture 2), and sitting on the floor (posture 3) during measurement of clothing pressure. Clothing weights were more in men than in woman. It showed that clothing weights had no effects on the garment pressure. In this study, however, just the garment pressures on scapular and top of the hip increased significantly by clothing weight (p<. 05). Clothing horizontally pressed on scapular and top of hip but not on other parts. When subjects stood up, the garment pressure was the highest on the side waist. Especially, clothing pressure on the front waist point was lower than that of the left side waist. On the upper parts of the human body, the garment pressure of left side waist was the highest, and followed by front waist, crista ilica, and abdomen in order. When subjects were sitting on the chair, the garment pressure on the lower parts of the human body was the highest on the top of hip. When the subjects were sitting on the chair or on the floor, the surface area on their skin of hip and waist parts increased by postures. In addition, it showed that men felt more comfortable than women on higher clothing pressure level.

  • PDF

Prediction of the Clothing Pressure Using the Radii of Double Curvature and Transformation of a Fabric (인체의 복곡면과 직물 변형 특성을 이용한 의복압 예측법의 개선)

  • Lee, Ye-Jin;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1168-1175
    • /
    • 2005
  • Clothing pressure has close relation with clothing comfort and depends on the pattern and properties of textile fabrics. Choosing a suitable clothing pressure is an essential factor for designing functional clothing such as the foundation for reshaping of a body contour or medical items for bum patient, and etc. However, it is hard to measure pressure values at the curved surface of a human body correctly. Recently, an air pack type pressure sensor, which has relatively excellent performance has been used to measure clothing pressure, however, it is still inconvenient to apply because it is a contact- type sensor. Therefore, in this paper, we suggest an indirect method that can measure clothing pressure without touching the subject by improving the equation of Kirk and Ibrahim (1966). However, confusions have been occurred when someone use the equation since the definition of parameters are somewhat vague. Furthermore, the estimated clothing pressure obtained by the previous method are quite different from the real values because this method does not consider the 3D effect of a human body and property changes of a transformed fabric. In this paper, the direction of principal stress and the radius of curvature in the principal direction were searched in the 3D image of the deformed girdle to get more accurate clothing pressure. The estimated clothing pressure was verified by comparing the result of the air pack type pressure sensor. It was found that the accuracy of the pressure estimation was improved by considering the 3D curvature of human body and the directional characteristics of textile fabrics.

Development of the Cardiovascular Simulator for Pulse Diagnosis Study (맥진연구를 위한 심혈관계 시뮬레이터의 개발)

  • Lee, Ju-Yeon;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Objectives The aim of this study is to develop a cardiovascular simulator that can reproduce blood pressure pulse and blood flow similar to those of the human body. Methods In order to design a system similar to the human cardiovascular system, the required performances were determined by investigating the hemodynamic characteristics of the heart and the arterial system. Main organ to be imitated is heart in simulator. The rest of the system was minimally designed. Also, a blood pressure and blood flow measurement system was developed for measuring the results. Results The developed system showed blood pressure pulse at similar range of the human aorta. The result waveform include primary wave caused by ventricular systole except reflected wave. Conclusions The blood pressure and blow flow patterns were replicated by the simulator. These patterns were similar to those of the human body. The system will play an important role in studying pulse diagnostics.

Effects of Knit Fabric Layering and Flat Seam Direction on Stretchability and Clothing Pressure

  • Lee, Hyojeong;Eom, Ran-i;Park, Sunhee;Lee, Yejin
    • Journal of Korean Living Environment System
    • /
    • v.24 no.4
    • /
    • pp.533-540
    • /
    • 2017
  • This study analyzes the stretchability and clothing pressure of fabrics made from stretchy knit materials, and uses the baseline data to develop various functional clothing made from stretchy knit fabrics. To observe the changes in the stretchability and clothing pressure, we observed the compatibility of the two materials (tricot and power-net), presence of flat seam, fabric layering, and flat seam direction as key variables. A standard test method for stretch properties (ASTM D2594) was used for measuring the stretchability of the material. Clothing pressure measurements were analyzed in terms of the mean and standard deviation values, and the correlation of the stretchability. In the case of tricot, the presence of flat seam increased the stretchability of the fabric regardless of the fabric layering. However, when tricot and the less stretchable power-net were combined, the presence of flat seam did not increase the stretchability. Flat seam did not interfere with or limit the stretchability of the fabric, but they did increase the clothing pressure at the seam. The stretchability had a negative correlation with the clothing pressure except along the flat seam.

Remote Control of a Mobile Robot Using Human Adaptive Interface (사용자 적응 인터페이스를 사용한 이동로봇의 원격제어)

  • Hwang, Chang-Soon;Lee, Sang-Ryong;Park, Keun-Young;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.777-782
    • /
    • 2007
  • Human Robot Interaction(HRI) through a haptic interface plays an important role in controlling robot systems remotely. The augmented usage of bio-signals in the haptic interface is an emerging research area. To consider operator's state in HRI, we used bio-signals such as ECG and blood pressure in our proposed force reflection interface. The variation of operator's state is checked from the information processing of bio-signals. The statistical standard variation in the R-R intervals and blood pressure were used to adaptively adjust force reflection which is generated from environmental condition. To change the pattern of force reflection according to the state of the human operator is our main idea. A set of experiments show the promising results on our concepts of human adaptive interface.

Development of Low-cost 3D Printing Bi-axial Pressure Sensor (저가형 3D프린팅 2축 압력 센서 개발)

  • Choi, Heonsoo;Yeo, Joonseong;Seong, Jihun;Choi, Hyunjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • As various mobile robots and manipulator robots have been commercialized, robots that can be used by individuals in their daily life have begun to appear. With the development of robots that support daily life, the interaction between robots and humans is becoming more important. Manipulator robots that support daily life must perform tasks such as pressing buttons or picking up objects safely. In many cases, this requires expensive multi-axis force/torque sensors to measure the interaction. In this study, we introduce a low-cost two-axis pressure sensor that can be applied to manipulators for education or research. The proposed system used three force sensitive resistor (FSR) sensors and the structure was fabricated by 3D printing. An experimental device using a load cell was constructed to measure the biaxial pressure. The manufactured prototype was able to distinguish the +-x-axis and the +-y-axis pressures.

A Study of Human Gait Discrimination Using Multi-pressure Sensor (다중압력센서를 이용한 보행패턴 추정에 관한 연구)

  • Choi, Dae-Yeong;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.673-677
    • /
    • 2016
  • In this study, In order to measure foot pressure, it makes analyzing device using multi-pressure sensor. This device was limited frequency band to 5Hz by using low-pass filter and MCU was detected signal every milliseconds. After wearing the device, the result was confirmed by blue-tooth to measure wirelessly. Also, we propose an algorithm to obtain the walking pattern using a time table in each of the detected peak from the pressure sensor. Using the algorithm, right walking pattern and abnormal pattern was detected. The results can be reflected more individual walking patterns than when using a conventional methods and also, developed device was no restriction on the human activity.

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

Determination of the Garment Pressure Level Using the Elastic Bands by Human Body Parts (탄성 압박 밴드를 이용한 인체 부위별 의복압 가압 수준에 관한 연구)

  • Baek, Yoon-Jeong;Choi, Jeong-Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.10
    • /
    • pp.1651-1658
    • /
    • 2008
  • This study was to decided the proper garment pressure level on the human body parts. Six volunteers (female: 30-40years) put on the same types of bands, a brief, and a non-woven gown. Garment pressure was measured in regular order with the elastic band on the human body parts such as the upper arm, the waist, the thigh, and the calf. At the same time, physiological responses such as the skin blood flow rate on 2 fingers, 7 different skin temperatures, rectal temperature, heat rates, and subjective responses about the pressure sensation, thermal sensation, and humidity sensation were measured and inquired. The results were as follows; 1. The thicker subcutaneous fat thickness, the higher the mean garment pressure on pressurizing the upper arm(p<.001). Also the thicker subcutaneous fat thickness. the thicker the upper arm circumference. 2. Heart rates increased pressured the upper arm and decreased pressured the waist, the thigh, and the calf. The higher the garment pressure, the higher heart rates on all body parts were pressured. Especially lean subjects showed higher physiological load than others. 3. On pressurizing the upper arm, heart rates, rectal temperature, and mean skin temperature were higher than without pressured state and pressured other body parts.4. The proper garment pressure levels were decided 30gf/$cm^2$ for fat people, 20gf/$cm^2$ for others on the upper arms and 24gf/$cm^2$ on the calf.