• Title/Summary/Keyword: human physiology

Search Result 1,478, Processing Time 0.033 seconds

[ $A_1$ ] Receptor-mediated Protection against Amyloid Beta-induced Injury in Human Neuroglioma Cells

  • Cho, Yong-Woon;Jung, Hyun-Ju;Kim, Yong-Keun;Woo, Jae-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • Adenosine has been reported to provide cytoprotection in the central nervous systems as well as myocardium by activating cell surface adenosine receptors. However, the exact target and mechanism of its action still remain controversial. The present study was performed to examine whether adenosine has a protective effect against $A{\beta}$-induced injury in neuroglial cells. The astrocyte-derived human neuroglioma cell line, A172 cells, and $A{\beta}_{25{\sim}35}$ were employed to produce an experimental $A{\beta}$-induced glial cell injury model. Adenosine significantly prevented $A{\beta}$-induced apoptotic cell death. Studies using various nucleotide receptor agonists and antagonists suggested that the protection was mediated by $A_1$ receptors. Adenosine attenuated $A{\beta}$-induced impairment in mitochondrial functional integrity as estimated by cellular ATP level and MTT reduction ability. In addition, adenosine prevented $A{\beta}$-induced mitochondrial permeability transition, release of cytochrome c into cytosol and subsequent activation of caspase-9. The protective effect of adenosine disappeared when cells were pretreated with 5-hydroxydecanoate, a selective blocker of the mitochondrial ATP-sensitive $K^+$ channel. In conclusion, therefore we suggest that adenosine exerts protective effect against $A{\beta}$-induced cell death of A172 cells, and that the underlying mechanism of the protection may be attributed to preservation of mitochonarial functional integrity through opening of the mitochondrial ATP-sensitive $K^+$ channels.

Distinct Cellular Calcium Metabolism in Radiation-sensitive RKO Human Colorectal Cancer Cells

  • Kim, Yun Tai;Jo, Soo Shin;Park, Young Jun;Lee, Myung Za;Suh, Chang Kook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.509-516
    • /
    • 2014
  • Radiation therapy for variety of human solid tumors utilizes mechanism of cell death after DNA damage caused by radiation. In response to DNA damage, cytochrome c was released from mitochondria by activation of pro-apoptotic Bcl-2 family proteins, and then elicits massive $Ca^{2+}$ release from the ER that lead to cell death. It was also suggested that irradiation may cause the deregulation of $Ca^{2+}$ homeostasis and trigger programmed cell death and regulate death specific enzymes. Thus, in this study, we investigated how cellular $Ca^{2+}$ metabolism in RKO cells, in comparison to radiation-resistant A549 cells, was altered by gamma (${\gamma}$)-irradiation. In irradiated RKO cells, $Ca^{2+}$ influx via activation of NCX reverse mode was enhanced and a decline of $[Ca^{2+}]_i$ via forward mode was accelerated. The amount of $Ca^{2+}$ released from the ER in RKO cells by the activation of $IP_3$ receptor was also enhanced by irradiation. An increase in $[Ca^{2+}]_i$ via SOCI was enhanced in irradiated RKO cells, while that in A549 cells was depressed. These results suggest that ${\gamma}$-irradiation elicits enhancement of cellular $Ca^{2+}$ metabolism in radiation-sensitive RKO cells yielding programmed cell death.

Cardiotoxicity induced by the combination therapy of chloroquine and azithromycin in human embryonic stem cell-derived cardiomyocytes

  • Kim, Ye Seul;Lee, Soo Yong;Yoon, Jung Won;Kim, Dasol;Yu, Sangbin;Kim, Jeong Su;Kim, Jae Ho
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.545-550
    • /
    • 2020
  • Combination therapy using chloroquine (CQ) and azithromycin (AZM) has drawn great attention due to its potential anti-viral activity against SARS-CoV-2. However, clinical trials have revealed that the co-administration of CQ and AZM resulted in severe side effects, including cardiac arrhythmia, in patients with COVID-19. To elucidate the cardiotoxicity induced by CQ and AZM, we examined the effects of these drugs based on the electrophysiological properties of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using multi-electrode arrays. CQ treatment significantly increased the field potential duration, which corresponds to prolongation of the QT interval, and decreased the spike amplitude, spike slope, and conduction velocity of hESC-CMs. AZM had no significant effect on the field potentials of hESC-CMs. However, CQ in combination with AZM greatly increased the field potential duration and decreased the beat period and spike slope of hESC-CMs when compared with CQ monotherapy. In support of the clinical data suggesting the cardiovascular side effects of the combination therapy of CQ and AZM, our results suggest that AZM reinforces the cardiotoxicity induced by CQ in hESC-CMs.

Role of $K^+$ Channels in the Vasodilation of Jagumhuan (좌금환(左金丸)의 혈관이완과 $K^+$ channel)

  • Son, Chang-Woo;Lee, Heon-Jae;Liou, Jia-Liang;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.743-748
    • /
    • 2005
  • This study was performed for the investigation of vasodilatory efficacy and its underlying mechanisms of Jagumhuan(JGH), a herbal remedy. JGH produced completely endothelium-dependent relaxation and relaxed phenylephrine(PE)-precontracted aorta in a concentration dependent manner. The magnitude of relaxation was greater in PE induced contraction than that of KCl, suggesting involvement of $K^+$ channel in the relaxant effect. Both glibenclamide$(10^{-5}M)$, a $K_{ATP}$ channel inhibitor and indometacin, a cyclooxygenase inhibitor, completely prevented this relaxation. The relaxation effects of JGH, involve in part the release of nitric oxide from the endothelium as pretreatment with L-NAME, an NOS inhibitor, and methylene blue, a cGMP inhibitor, attenuated the responses by 62% and 58%, respectively. In addition, nitrite was produced by JGH in human aortic smooth muscle cells and human umbilical vein endothelial cells. The relaxant effect of JGH was also inhibited by 55.41% by tetraethylammonium(TEA; 5mM), a $K_{Ca}$ channel inhibitor. In the absence of extracellular $Ca^{2+}$, pre-incubation of the aortic rings with JGH significantly reduced the contraction by PE, suggesting that the relaxant action of the JGH includes inhibition of $Ca^{2+}$ release from intracellular stores. These results indicate that in rat thoracic aorta, JGH may induce vasodilation through ATP sensitive $K^+$ channel activation by prostacyclin production. However, the relaxant effect of JGH may also mediated in part by NO pathways and $Ca^{2+}$ activated $K^+$ channel.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley;Kayla J. Rayford;Ashutosh Arun;Fernando Villalta;Maria F. Lima;Siddharth Pratap;Pius N. Nde
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.51.1-51.20
    • /
    • 2022
  • Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

Inhibitory Effects of Quercetin on Muscle-type of Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Lee, Soo-Han;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.195-201
    • /
    • 2011
  • The flavonoid quercetin is a low molecular weight compound generally found in apple, gingko, tomato, onion and other red-colored fruits and vegetables. Like other flavonoids, quercetin has diverse pharmacological actions. However, relatively little is known about the influence of quercetin effects in the regulation of ligand-gated ion channels. Previously, we reported that quercetin regulates subsets of nicotinic acetylcholine receptors such as ${\alpha}3{\beta}4$, ${\alpha}7$ and ${\alpha}9{\alpha}10$. Presently, we investigated the effects of quercetin on muscle-type of nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding human fetal or adult muscle-type of nicotinic acetylcholine receptor subunits. Acetylcholine treatment elicited an inward peak current ($I_{ACh}$) in oocytes expressing both muscle-type of nicotinic acetylcholine receptors and co-treatment of quercetin with acetylcholine inhibited $I_{ACh}$. Pre-treatment of quercetin further inhibited $I_{ACh}$ in oocytes expressing adult and fetal muscle-type nicotinic acetylcholine receptors. The inhibition of $I_{ACh}$ by quercetin was reversible and concentration-dependent. The $IC_{50}$ of quercetin was $18.9{\pm}1.2{\mu}M$ in oocytes expressing adult muscle-type nicotinic acetylcholine receptor. The inhibition of $I_{ACh}$ by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate human muscle-type nicotinic acetylcholine receptor channel activity and that quercetin-mediated regulation of muscle-type nicotinic acetylcholine receptor might be coupled to regulation of neuromuscular junction activity.

Assembly of a Functional cDNA for Human Liver Growth Hormone Receptor: Cloning of Assembled hGHR cDNA (Human Liver로부터 Cloning한 cDNA성장호르몬 수용체의 기능성 검토)

  • 장규태;지선병홍;손동수;서원진삼;고교적웅
    • Journal of Embryo Transfer
    • /
    • v.13 no.2
    • /
    • pp.159-172
    • /
    • 1998
  • 사람 성장호르몬 수용체(hGHR) cDNA는 PCR방법에 의하여 fagment로서 보고되어진 바 있으나, liver cDNA로 부터 전장을 cloning한 보고는 없는 실정으로 본 연구에서는 기능을 가진 약 4.6kbp의 cDNA hGHR을 cloning 하는데 성공하였다. 먼저 cloning하기 위하여 human liver mRNA와 human breast cancer tissue로부터 회수한 mRNA를 RT-PCR방법에 의하여 human cDNA library와 cloning에 필요한 probe를 제작하였다. human library mRNA는 GT-PCR방법에 의하여 증폭하여 증폭되어진 산물은 λZAP Vector를 이용하여 cDNA library를 구축하였고,screeing을 위하여 임 보고 되어진 hGHR fragment native sequence를 기초로 N-terminal부분의 primer를 설계하여 950bp의 probe를 얻는데 성공하였다. 이 probe를 이용하여 준비된 human liver cDNA library로부터 2.5$\times$10 6개의 plaque로부터 6개의 positive clone을 획득하였고, 이들중 poly Asignal인 "AATAAA"를 포함하고 있는 가장 긴 약 3.8kbp의 clone을 sequencing한 결과 open reading frame을 포함하고 있었으나, 5'부분의 결손되어 있었다. 그리하여 이 부분은 human breast cancer tissue로 부터 회수한 mRNA를 RT-PCR에 의하여 증폭하였고, sequencing결과 이미 보고되어진 native hGHR와 비교한 결과 하나의 nucleotide가 silent mutation으로 판명되었다.한편 human liver cDNA library로부터 cloning한 3.8cp의 positive clone의 5'end의 결손된 부분에 silent mutation된 PCR 산물을 연결함으로써 native hGHR와 유사한 cDNA hGHR subcloning에 성공하였다. 이러한 cDNA hGHR의 clone이 function을 가지고 있는지를 검토하기 위하여 eukaryotic 발현 vector인 pCXN2에 의거 ligation한 후 chinese hamster ovary cell[CHO-KI]에 transfect를 실시하였다. Dexamethasone은 첨가하지 않고 hGH만의 존재하에서 이들 cell을 배양시키고 cell menbrane에서 발현 여부를 판정키 위하여 hGHR monocloual antibody를 사용하여 flow cytometery해석을 실시하는 한편 125I-hGH binding assay에 의하여 hGH binding activity를 측정하였다. 최종적으로 GH signal transduction의 target genedf으로 알려져 있는 serine protease inhibitor 2.1(Spi 2.1) gene의 promotor activity를 검토한 결과 hGHR을 transfect한 CHO Cell에 있어서 hGH의 농도에 의존적으로 증가되었다. 따라서 본 실험에서 cloning한 cDNA hGHR는 native hGHR와 같은 기능을 가지는 것으로 판명되었다.것으로 판명되었다.

  • PDF

Nitric Oxide-mediated Relaxation by High $K^+$ in Human Gastric Longitudinal Smooth Muscle

  • Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.405-413
    • /
    • 2011
  • This study was designed to elucidate high-$K^+$ induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high $K^+$ (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high $K^+$ (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high $K^+$-induced relaxation. $K^+$ channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium ($Ba^{2+}$) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent $K^+$ channel (KV) blocker, inhibited high $K^+$ -induced relaxation, hence reversing to tonic contraction. High $K^+$-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and KV channel blocker sensitive high $K^+$-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high $K^+$-induced relaxation which was activated by NO/sGC pathway and by $K_V$ channel dependent mechanism.

Cytoprotective Effects of Radix Curcumae Aromaticae in Human Umbilical Vein Endothelial Cells (울금에 의한 혈관내피세포 보호 효과에 대한 연구)

  • Seo Eun A;Chung Hun Taeg;Ko Kwang Hak;Kwon Kang Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1805-1809
    • /
    • 2004
  • In order to validate the use of Radix Curcumae Aromaticae as an anti-inflammatory drug in the traditional Korean medicine, I have investigated the effect of water-soluble extract of Radix Curcumae Aromaticae (ECA) on the expression of inducible heme oxygenase-1 (HO-1), which ha.s anti-inflammatory and cytoprotective effects stimulates, in human umbilical vein endothelial cells (HUVECs) stimulated with a high dose of pro-inflammatory tumor necrosis factor-alpha (TNF-α). The extract protected dose-dependently HUVECs against TNF-α-induced apoptosis, as measured qualitatively by a nuclear staining method using the fluoresoence DAPI and quantitatively by a flow cytometry using fluoresce-enhanced Annexin V antibody, and significantly Increased HO-1 expression, as determined by Western blotting analysis using anti-HO-1 antibody. Biockage of HO-1 activity by a pharmacological inhibitor reversed cytoprotection afforded by the extract, and treatment with carbon monoxide, one of HO-1 metabolites, resulted in cytoprotection comparable to the extract. These results suggest that ECA may have therapeutic potential in the control of endothelial disorders caused by inflammatory cytokines.