[ $A_1$ ] Receptor-mediated Protection against Amyloid Beta-induced Injury in Human Neuroglioma Cells

  • Cho, Yong-Woon (Department of Physiology, Pusan National University School of Medicine) ;
  • Jung, Hyun-Ju (Department of Physiology, Pusan National University School of Medicine) ;
  • Kim, Yong-Keun (Department of Physiology, Pusan National University School of Medicine) ;
  • Woo, Jae-Suk (Department of Physiology, Pusan National University School of Medicine)
  • Published : 2007.04.30

Abstract

Adenosine has been reported to provide cytoprotection in the central nervous systems as well as myocardium by activating cell surface adenosine receptors. However, the exact target and mechanism of its action still remain controversial. The present study was performed to examine whether adenosine has a protective effect against $A{\beta}$-induced injury in neuroglial cells. The astrocyte-derived human neuroglioma cell line, A172 cells, and $A{\beta}_{25{\sim}35}$ were employed to produce an experimental $A{\beta}$-induced glial cell injury model. Adenosine significantly prevented $A{\beta}$-induced apoptotic cell death. Studies using various nucleotide receptor agonists and antagonists suggested that the protection was mediated by $A_1$ receptors. Adenosine attenuated $A{\beta}$-induced impairment in mitochondrial functional integrity as estimated by cellular ATP level and MTT reduction ability. In addition, adenosine prevented $A{\beta}$-induced mitochondrial permeability transition, release of cytochrome c into cytosol and subsequent activation of caspase-9. The protective effect of adenosine disappeared when cells were pretreated with 5-hydroxydecanoate, a selective blocker of the mitochondrial ATP-sensitive $K^+$ channel. In conclusion, therefore we suggest that adenosine exerts protective effect against $A{\beta}$-induced cell death of A172 cells, and that the underlying mechanism of the protection may be attributed to preservation of mitochonarial functional integrity through opening of the mitochondrial ATP-sensitive $K^+$ channels.

Keywords

References

  1. Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23: 5088- 5095, 2003 https://doi.org/10.1523/JNEUROSCI.23-12-05088.2003
  2. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161: 41- 54, 2003 https://doi.org/10.1083/jcb.200207030
  3. Andoh T, Ishiwa D, Kamiya Y, Echigo N, Goto T, Yamada Y. A1 adenosine receptor-mediated modulation of neuronal ATP-sensitive K channels in rat substantia nigra. Brain Res 1124: 55- 61, 2006 https://doi.org/10.1016/j.brainres.2006.09.085
  4. Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO. Mitochondria as a target for neurotoxins and neuroprotective agents. Ann N Y Acad Sci 993: 334- 344, 2003 https://doi.org/10.1111/j.1749-6632.2003.tb07541.x
  5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248- 254, 1976 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Daly JW. Adenosine receptors: targets for future drugs. J Med Chem 25: 197- 207, 1982 https://doi.org/10.1021/jm00345a001
  7. Haleen SJ, Steffen RP, Hamilton HW. PD 116948, a highly selective $A_1$ adenosine receptor antagonist. Life Sci 140: 555- 561, 1987
  8. Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive $K^+$ channel in the mitochondrial inner membrane. Nature 352: 244- 247, 1991 https://doi.org/10.1038/352244a0
  9. Jacobson KA, Park KS, Jiang JL, Kim YC, Olah ME, Stiles GL, Ji XD. Pharmacological characterization of novel $A_3$ adenosine receptor-selective antagonists. Neuropharmacol 36: 1157- 1165, 1997 https://doi.org/10.1016/S0028-3908(97)00104-4
  10. Kontush A. Amyloid-beta: an antioxidant that becomes a prooxidant and critically contributes to Alzheimer's disease. Free Radic Biol Med 31: 1120- 1131, 2001 https://doi.org/10.1016/S0891-5849(01)00688-8
  11. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619- 642, 1998 https://doi.org/10.1146/annurev.physiol.60.1.619
  12. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89: 35- 41, 1995 https://doi.org/10.1007/BF00294257
  13. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366: 177- 196, 1998 https://doi.org/10.1016/S0005-2728(98)00112-1
  14. Liu GS, Downey JM, Cohen MV. Adenosine, ischemia and preconditioning, In: Jacobson KA, Jarvis MF ed, Purinergic Approaches in Experimental Therapeutics. 1st ed. Wiley-Liss, NY, p 153-172, 1997
  15. Lyman GE, DeVincenzo JP. Determination of picogram amounts of ATP using the luciferin-luciferase enzyme system. Anal Biochem 21: 435- 443, 1967 https://doi.org/10.1016/0003-2697(67)90318-1
  16. Moos WH, Szotek DS, Bruns RF. $N^6$-cycloalkyladenosines. Potent, A1-selective adenosine agonists. J Med Chem 28: 1383- 1384, 1985 https://doi.org/10.1021/jm00148a001
  17. Morgan DM. Tetrazolium (MTT) assay for cellular viability and activity. Methods Mol Biol 79: 179- 183, 1998
  18. Nagele RG, D'Andrea MR, Lee H, Venkataraman V, Wang HY. Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 971: 197- 209, 2003 https://doi.org/10.1016/S0006-8993(03)02361-8
  19. Olah ME, Stiles GL. Adenosine receptor subtypes: characterization and therapeutic regulation. Ann Rev Pharmacol Toxicol 35: 581- 606, 1995 https://doi.org/10.1146/annurev.pa.35.040195.003053
  20. Phillis JW. Adenosine, inosine, and oxypurines in cerebral ischemia. In: Schurr A, Rigor BM ed, Cerebral Ischemia and Resusscitation. 1st ed. CRC Press, Boca Raton, FL p 189- 204, 1990
  21. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13: 1676- 1687, 1993 https://doi.org/10.1523/JNEUROSCI.13-04-01676.1993
  22. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW. Structure-activity analyses of betaamyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 64: 253- 265, 1995 https://doi.org/10.1046/j.1471-4159.1995.64010253.x
  23. Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB. Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol Sci 13 :439- 445, 1992 https://doi.org/10.1016/0165-6147(92)90141-R
  24. Selkoe DJ. Amyloid beta-protein precursor: new clues to the genesis of Alzheimer's disease. Curr Opin Neurobiol 4: 708- 716, 1994 https://doi.org/10.1016/0959-4388(94)90014-0
  25. Smale G, Nichols NR, Brady DR, Finch CE, Horton WE Jr. Evidence for apoptotic cell death in Alzheimer's disease. Exp Neurol 33: 225-230, 1995 https://doi.org/10.1016/0014-4886(71)90116-6
  26. Stiles GL. Adenosine receptors. J Biol Chem 267: 6451- 6454, 1992
  27. Szewczyk A, Marban E. Mitochondria: a new target for $K^+$ channel openers? Trends Pharmacol Sci 20: 157- 161, 1999 https://doi.org/10.1016/S0165-6147(99)01301-2
  28. Ukena D, Shamim MT, Padgett W, Daly JW. Analogs of caffeine: antagonists with selectivity for $A_2$ adenosine receptors. Life Sci 39: 743-750, 1986 https://doi.org/10.1016/0024-3205(86)90023-8
  29. Von Lubitz DK, Diemer NH. Self-defense of the brain: adenosinergic strategies. In: Marangos PJ, Lal H ed, Emerging Strategies in Neuroprotection. Birkhauser, Boston, MA, p 151- 186, 1990
  30. Von Lubitz DK, Carter MF, Beenhakker M, Lin RC, Jacobson KA. Adenosine: a prototherapeutic concept in neurodegeneration. Ann N Y Acad Sci 765: 163-178, 1995a https://doi.org/10.1111/j.1749-6632.1995.tb16573.x
  31. Von Lubitz DK, Carter MF, Deutsch SI, Lin RC, Mastropaolo J, Meshulam Y, Jacobson KA. The effects of adenosine A3 receptor stimulation on seizures in mice. Eur J Pharmacol 275: 23- 29, 1995b https://doi.org/10.1016/0014-2999(94)00734-O