• Title/Summary/Keyword: human performance model

Search Result 1,050, Processing Time 0.035 seconds

Prediction of Whole Body Vibration for CE Operatorsusing the Vertical Human Body Model (수직 인체 모델을 이용한 건설 중장비 운전자의 전신진동 예측)

  • Ham, Jeonghoon;Kim, Sunghwan;Kang, Hyunseok;Park, Sangkyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.516-517
    • /
    • 2013
  • Whole body vibration is very important for operators in construction equipment (CE) industry. There is ISO 2631 regulation to protect operators of CE. Recently WBV is one of critical performance parameters of CE to give operators much better comfortable working environment. And there are many kinds of numerically simplified human body model for the motor industry. We applied one human body model in ISO 5982 for the CE development at early stage. And we've checked the validity of this model to consider WBV by the operator comfort point of view.

  • PDF

Analysis on Co-channel Interference of Human Body Communication Supporting IEEE 802.15.6 BAN Standard

  • Hwang, Jung-Hwan;Kang, Tae-Wook;Kim, Youn-Tae;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.439-449
    • /
    • 2015
  • Human body communication (HBC) is being recognized as a new communication technology for mobile and wearable devices in a body area network (BAN). This paper presents co-channel interference experienced by HBC supporting the physical layer in the IEEE 802.15.6 BAN standard. To analyze the co-channel interference, a co-channel interference model is introduced, and space-domain and time-domain parameters representing an interference environment are generated using the co-channel interference model. A new signal-to-interference ratio (SIR) parameter depending on the peak amplitudes of the data signals causing co-channel interference is defined; co-channel interference can be easily analyzed and modelled using the newly defined SIR. The BER degradation model derived using the co-channel interference model and SIR in this paper can be effectively used to estimate the performance.

DRIVER STEERING MODEL AND IMPROVEMENT TECHNIQUE OF VEHICLE MOVEMENT PERFORMANCE DURING DRIFT RUNNING

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.449-457
    • /
    • 2006
  • The driver model during drift cornering was examined, and a technique to improve vehicle movement performance during drift cornering was investigated. Based on the results obtained, the driver was found to steer using feedback of the body slip angle and the body slip angle velocity during drift cornering. Moreover, improvement of the cornering force characteristic, at which exceeded the maximum cornering force calm as much as possible is important.

Sensemaking and Human Judgment Under Dynamic Environment (급변하는 환경에서의 인간의 의사결정과 상황파악)

  • Seong, Youn-Ho;Park, Eui-H.;Lee, Hwa‐Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.49-60
    • /
    • 2006
  • Technological encroachment provides human operators with flood of information that must be analyzed to understand the environment and make judgments that lead to strategic actions. Further, the environment is not static and therefore uncertain, changing its aspect dynamically. Complexity accompanied with its dynamics imposes substantial difficulty to human operators' task. Criticality of having situational understanding becomes more important than ever. Situationalunderstanding requires the human operators possessing tacit knowledge in order for them to make the sense out of the situation while interacting with information from many heterogeneous sources, the notion of sensemaking. Sensemaking refers to the process of developing mental framework to assemble pieces of information representing different aspects of the environment that can be used to develop one's own actionable knowledge to implement their judgments in the uncertain environment. Therefore, judgment process and performance is a key component of sensemaking process. Among many judgment and decision making models, the lens model with its extension can be utilized to partially describe the judgmental aspect of sensemaking. One of the lens model parameters, unmodeled knowledge, can be a corresponding quantitative measure for the tacit knowledge that plays an important role in sensemaking. In this paper, a comprehensive literature for sensemaking is provided to formally define the notion of sensemaking in the military domain. Also, it is proposed that there is a crucial link between the sensemaking and human judgment process and performance from the lens model perspective. Potential implications for experimental framework are also proposed.

Marine phytoplankton improves recovery and sustains immune function in humans and lowers proinflammatory immunoregulatory cytokines in a rat model

  • Sharp, Matthew;Wilson, Jacob;Stefan, Matthew;Gheith, Raad;Lowery, Ryan;Ottinger, Charlie;Reber, Dallen;Orhan, Cemal;Sahin, Nurhan;Tuzcu, Mehmet;Durkee, Shane;Saiyed, Zainulabedin;Sahin, Kazim
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.1
    • /
    • pp.42-55
    • /
    • 2021
  • [Purpose] This study investigated the effects of marine phytoplankton supplementation (Oceanix®, Tetraselmis chuii) on 1) maximal isometric strength and immune function in healthy humans following a oneweek high-intensity resistance-training program and 2) the proinflammatory cytokine response to exercise in a rat model. [Methods] In the human trial, 22 healthy male and female participants were randomly divided into marine phytoplankton and placebo groups. Following baseline testing, participants underwent a 14-day supplement loading phase before completing five consecutive days of intense resistance training. In the rat model, rats were randomly divided into four groups (n=7 per condition): (i) control, (ii) exercise, (iii) exercise + marine phytoplankton (2.55 mg/kg/day), or (iv) exercise + marine phytoplankton (5.1 mg/kg/day). Rats in the exercising groups performed treadmill exercise 5 days per week for 6 weeks. [Results] In the human model, marine phytoplankton prevented significant declines in the isometric peak rate of force development compared to placebo. Additionally, salivary immunoglobulin A concentration was significantly lower following the resistance training protocol in the placebo group but not in the marine phytoplankton group. Marine phytoplankton in exercising rats decreased intramuscular levels and serum concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) and intramuscular concentrations of malondialdehyde. [Conclusion] Marine phytoplankton prevented decrements in indices of functional exercise recovery and immune function. Mechanistically, these outcomes could be prompted by modulating the oxidative stress and proinflammatory cytokine response to exercise.

BIM-based Design Verification Performance Analysis with Priority Rules Applied (우선순위 규칙을 적용한 BIM 기반 설계검증 성과 분석)

  • Huh, Seung-Ha;Shim, Jae-Hyeong;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • BIM is one of the means of reducing the economic loss caused by design errors. These features of BIM have led to increased use of BIM. With the increasing use of BIM, several studies have been conducted to analyze the performance of BIM. As the importance of BIM staff is emphasized in the performance analysis of BIM, the human resource allocation of BIM staff can become an important research issue. However, there are few studies to measure the workforce effectiveness of BIM staff. Ham et al (2020) measured BIM workforce efficiency using FCFS queue model rules. Since design errors can have different effects on the project depending on the type, there are design errors that must be dealt with first. Therefore, in this study, a priority queue was used to solve design errors with high priority first. The performance of BIM-based design verification was analyzed by quantitatively analyzing the performance of BIM staff when the priority rule was applied to the design error processing sequence.

Modeling and Identification of Human Mind using a Robot Which Walks Together

  • Kwon, Oh-Kyu;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.2-161
    • /
    • 2001
  • To achieve a cooperative work between human and robot, it is thought helpful to estimate the states of human mind, which originates his behavior. In this paper, human mind was considered to modify instinctive desires according to the conditions of external world surrounding the instinct. A simple human mind model was designed so that it finds a balance between instinctive desire and restriction from the external world. The external world is divided into three sub-worlds like subject´s whole body, its partner and concerned periphery. Proposed mind model has three-layers construction. Each of the layer tries to find a balance between desire and restriction from external world. In each layer, the role of finding the balance was expressed by an identical optimal control minimizing a performance index function of quadratic form with a weight factor, which is rearranged and named ...

  • PDF

A Study on a Performance Evaluation of Transporters in Refrigerate Warehouse Based on Simulation Method (시뮬레이션 방법을 이용한 냉장물류센터 운반설비의 적정 계획)

  • Hwang, Heung-Suk;Cho, Gyu-Sung
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.105-110
    • /
    • 2003
  • This paper deals with a performance evaluation model of transporters in refrigerate warehouse. This study focussed on determining refrigerate warehouse design to minimize the expected travel time to improve the transporter performance and to minimize the operating costs. This study proposes the important detail aspects of refrigerate warehouse design, operational parameters and congestions. For solving this problem, we have shown a mathematical model to compute the initial value of the system performance and also a simulation model using AutoMod. A systematic approach proposed in this study for an optimal planning of order-picking warehouse is known as an effective method for the planning of order-picking warehouse and a performance evaluation problem of refrigerate warehouse operation.

Human Activity Recognition Using Body Joint-Angle Features and Hidden Markov Model

  • Uddin, Md. Zia;Thang, Nguyen Duc;Kim, Jeong-Tai;Kim, Tae-Seong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.569-579
    • /
    • 2011
  • This paper presents a novel approach for human activity recognition (HAR) using the joint angles from a 3D model of a human body. Unlike conventional approaches in which the joint angles are computed from inverse kinematic analysis of the optical marker positions captured with multiple cameras, our approach utilizes the body joint angles estimated directly from time-series activity images acquired with a single stereo camera by co-registering a 3D body model to the stereo information. The estimated joint-angle features are then mapped into codewords to generate discrete symbols for a hidden Markov model (HMM) of each activity. With these symbols, each activity is trained through the HMM, and later, all the trained HMMs are used for activity recognition. The performance of our joint-angle-based HAR has been compared to that of a conventional binary and depth silhouette-based HAR, producing significantly better results in the recognition rate, especially for the activities that are not discernible with the conventional approaches.

A Study on the Human Finger Model using Wire-type SMA Actuator (와이어형 형상기억합금 구동기를 이용한 인체 손가락 모델에 대한 연구)

  • Jung, Jin-Woo;Lim, Soo-Choel;Park, Young-Pil;Yang, Hyun-Seok;Park, No-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.891-894
    • /
    • 2005
  • This paper describes a human finger model driven by shape memory alloy(SMA) wires. The finger model has three joints that are similar to human finger. Each joint is actuated with two wires in the antagonistic manner and six wires are used to actuate three finger joint. In order to obtain the desirable finger motion, the diameters of the SMA wires are designed with different diameters by considering the required actuating force and response time. The rotary sensors are used to measure the angle positions of the joints and PWM control using PID algorithm is used to achieve desired angle positions of the finger joints. After estimating the control performance of each finger joint for the desired angle position, the antagonistic motion control of the finger model is experimentally evaluated.

  • PDF