• Title/Summary/Keyword: human movement

Search Result 1,384, Processing Time 0.033 seconds

Effects of Calcium Supplementation and Exercise on Bone Mineral Density in Middle-Aged Women (칼슘보충 섭취와 운동이 중년 여성의 골밀도에 미치는 영향)

  • Na, Hye-Bok;Kim, Hyun-Jung;Park, Jin
    • Journal of Nutrition and Health
    • /
    • v.35 no.9
    • /
    • pp.962-969
    • /
    • 2002
  • This study examined the effect of calcium supplementation and exercise on bone mineral density (BMD) and general characteristics, dietary intake and biochemical measurements for 45 healthy middle-aged women (40-57 years). Subjects were divided in to 4 groups; control group (G1), exercise group (G2), calcium supplementation group (G3), and calcium supplementation with exercise group (G4). The subjects were 45.8$\pm$ 0.66 years old. BMI(kg/$m^2$) was 23.31 $\pm$ 0.63 in Gl group, 22.92 $\pm$ 0.51 in G2 group, 23.64 $\pm$ 0.61 in G3 group, 23.40 $\pm$ 0.37 in G4 group, and BMI of all groups were in normal value. Energy intake was 1332.28㎉/day, 60% of RDA, so that may be unbalance of micronutrients. Especially, calcium intake was 62.8% of RDA that was very low level. Osteocalcine was not statistically significant but calcium supplementation group (G3) be showed increase. BMD was usually decreased by Aging, but in this study was increased in the all group, except control group. It showed increase of BMD for calcium supplementation and/or exercise. Overall results indicate that calcium supplementation and/or exercise increased BMD of middle-aged women, but long-term calcium supplementation and exercise will be able to more effect.(Korean J Nutrition 35(9) : 962~969, 2002)

Study on Change of the Flatfoot's Ankle Angle in Sagittal plane before and after Wearing FFO (기능성 발보조기 착용 전후의 시상면의 편평족 발목각도 변화에 관한 연구)

  • Park, K.Y.;Park, S.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • The foot performs an important function in supporting the body and keeping body balance. An abnormal walking habit breaks the balance of the human body as well as the normal function of the foot. The influence of a flatfoot(pes planus) occupies a considerable portion of the various causes resulting in the wrong walking habit. But, little studies has been done by the functional foot orthotics for the flat foot. The object of this study, therefore, is to propose a new approach method to reveal the effects of the improvement of the foot function by using orthotics. The essential point of this study is to measure and analyze the change of ankle angle in the sagittal plane for flat foot subjects wearing the orthotics. Before and after wearing the functional orthotics, the gait analysis of flat foot subjects was conducted in three experimental aspects : the change of ankle angle, the change of the total Ankle ROM and the difference of left & right ankle angle in the sagittal plane. 1. The average ankle angle differences of before-and-after wearing the orthotics have declined like this; left : $2.71^{\circ}$, right: $1.91^{\circ}$ (p<0.05). 2. Total ankle ROM also showed decrease in both sides while the left side's is rather slight; left : $0.57^{\circ}$, right : $2.07^{\circ}$ (p<0.05). 3. The difference of left and right ankle angle in the sagittal plane decreased by $0.71^{\circ}$ (p<0.05). In result, it is confirmed that the functional foot orthotics have a significant effect on mechanical movement of ankle joint for flat foot. it is expected that this paper will be further studied and improved as a practical estimation method in the research on the effect of foot-orthotics.

Detecting of Periodic Fasciculations of Avian Muscles Using Magnetic and Other Multimedia Devices

  • Nakajima, Isao;Tanaka, Sachie;Mitsuhashi, Kokuryo;Hata, Jun-ichi;Nakajima, Tomo
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.293-302
    • /
    • 2019
  • In the past, there was a theory that influenza wasn't transmitted directly from birds but was infected to humans via swains. Recently, molecular level research has progressed, and it was confirmed that the avian influenza virus can directly infected to human lung and intestinal epithelial cells. Three pandemicsin the past 100 years were also infected to humans directly from birds. In view of such scientific background, we are developing a method for screening sick birds by monitoring the physiological characteristics of birds in a contactless manner with sensors. Here, the movement of respiratory muscles and abdominal muscles under autonomic innervation was monitored using a magnet and Hall sensor sewn on the thoracic wall, and other multimedia devices. This paper presents and discusses the results of experiments involving continuous periodic noise discovered during flight experiments with a data logger mounted on a Japanese pheasant from 2012 to 2015. A brief summary is given as the below: 1. Magnet and Hall sensor sewn to the left and right chest walls, bipolar electrocardiograms between the thoracic walls, posterior thoracic air sac pressure, angular velocity sensors sewn on the back and hips, and optical reflection of LEDs (blue and green) from the skin of the hips allow observation of periodic vibrations(fasciculations) in the waves. No such analysis has been reported before. 2. These fasciculations are presumed to be derived from muscle to maintain and control air sac pressure. 3. Since each muscle fiber is spatially Gaussian distributed from the sympathetic nerve, the envelope is assumed to plot a Gaussian curve. 4. Since avian trunk muscles contract periodically at all time, we assume that the sympathetic nerve dominates in their control. 5. The technique of sewing a magnet to the thoracic wall and measuring the strength of the magnetic field with a Hall sensor can be applied to screen for early stage of avian influenza, with a sensor attached to the chicken enclosure.

Artificial Intelligence Art : A Case study on the Artwork An Evolving GAIA (대화형 인공지능 아트 작품의 제작 연구 :진화하는 신, 가이아(An Evolving GAIA)사례를 중심으로)

  • Roh, Jinah
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.311-318
    • /
    • 2018
  • This paper presents the artistic background and implementation structure of a conversational artificial intelligence interactive artwork, "An Evolving GAIA". Recent artworks based on artificial intelligence technology are introduced. Development of biomimetics and artificial life technology has burred differentiation of machine and human. In this paper, artworks presenting machine-life metaphor are shown, and the distinct implementation of conversation system is emphasized in detail. The artwork recognizes and follows the movement of audience using its eyes for natural interaction. It listens questions of the audience and replies appropriate answers by text-to-speech voice, using the conversation system implemented with an Android client in the artwork and a webserver based on the question-answering dictionary. The interaction gives to the audience discussion of meaning of life in large scale and draws sympathy for the artwork itself. The paper shows the mechanical structure, the implementation of conversational system of the artwork, and reaction of the audience which can be helpful to direct and make future artificial intelligence interactive artworks.

A Stable Access Point Selection Method Considering RSSI Variation in Fingerprinting for Indoor Positioning (실내측위를 위한 핑거프린팅에서의 RSSI 변동을 고려한 안정된 AP 선출방법)

  • Hwang, DongYeop;Kim, Kangseok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.9
    • /
    • pp.369-376
    • /
    • 2017
  • Recently, an RSSI-based fingerprinting localization technology has been widely used in indoor location-based services. In the conventional fingerprinting method, as many APs as possible are used to increase the accuracy of location estimation. In another study, a part of APs having the strongest RSSI signal intensity are selected and used to reduce the time spent for positioning. However, it does not reflect the influence of RSSI occurred from the changes of the surrounding environments such as human movement or moving obstacles in a real environment. The environmental changes may cause the difference between the predicted RSSI signal strength value and the measured value, and thus occur an unpredictable error in the position estimation. Therefore, in order to mitigate the error caused by environmental factors, it is necessary to select APs suitable for indoor positioning estimation considering the changes in the surrounding environments. In this paper, we propose a method to select stable APs considering the influence of surrounding environments and derive a suitable positioning algorithm. In addition, we compare and analyze the performance of the proposed method with that of the existing AP selection methods through experiments.

New Approach to Air Quality Management (대기오염관리의 새로운 접근방법)

  • 윤명조
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.2
    • /
    • pp.25-48
    • /
    • 1993
  • International concern over the environmental pollution is ever increasing, and diversified countermeasures must be devised in Korea also. Global trend, damages, problems and countermeasures with respect to issues mentioned in the Rio Declaration, such as prevention of ozone layer destruction, reduction of migratory atmospheric pollution between neighboring countries, and prevention of global greenhouse effect, were discussed in this report. Conclusion of the report is summarized as follows : A. Measurement, Planning and Monitoring (1) Development and implementation of a global network for measurement and monitoring from the global aspects such factors as related to acid rain(Pioneer substances, pH, sulfate, nitrate), effect of global temperature(Air temperature, $CO_2$, $CH_4$, CFC, $N_2O$) and destruction of ozone layer($CFC_S$). (2) Establishment of network system via satellite monitoring movement of regional air mass, damage on the ozone layer and ground temperature distribution. B. Elucidation of Present State (1) Improvement and development of devices for carbon circulation capable of accurately forecasting input and output of carbon. (2) Developmental research on chemical reactions of greenhouse gas in the air. (3) Improvement and development of global circulation model(GCM) C. Impact Assessment Impact assessment on ecosystem, human body, agriculture, floodgate, land use, coastal ecology, industries, etc. D. Preventive Measures and Technology Development (1) Development and consumption of new energy (2) Development of new technology for removal of pioneer substances (3) Development of substitute matter for $CFC_S$ (4) Improvement of agriculture and forestry means to prevent the destruction of ozone layer and the greenhouse effect of the globe (5) Improvement of housing to prevent the destruction of ozone layer and the greenhouse effect of the globe (6) Development of new technology for probing underground water (7) Preservation of forest (8) Biomass 5. Policy Development (1) Development of strategy model (2) Development of long term forecast model (3) Development of penalty charge effect and expense evaluation methods (4) Feasibility study on regulations By establishing the above mentioned measures for environmentally sound and sustainable development to establish the right to live for humankind and to preserve the one and only earth.

  • PDF

The Kinematic Analysis of Back-Kick Motion in Taekwondo (태권도 숙련자와 미숙련자의 공격뒤차기 동작에 대한 운동학적 분석)

  • Lee, Dong-Jin;Park, Chan-Ho;Kim, Hun-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.43-51
    • /
    • 2006
  • The purpose of this study was to analyze kinematic variables during turing back kick motion of Taekwondo. The subjects of this study were the 4 skilled and 4 unskilled of male university player in respectively. The experiment of this study was used two 16mm high speed cameras and its speed 125 frames/s. Analysis of this data was three dimensional cinematography using KWON3D program package. The results were as following; 1. In the elapsed time, there was no significance difference statically between a skilled and unskilled group. But skilled group was more fast during the motion of I phase. And unskilled group was more fast during the motion of II phase so called force production section, which had an influence on Diechagi's velocity. 2. In the center of gravity of human body, the changing of it was $1.10{\pm}0.04m$, $1.12{\pm}0.03m$ of LFM(left foot movement) and $1.36{\pm}0.08m$, $1.39{\pm}0.09m$ of RKF(right knee flection), and $1.44{\pm}0.08m$, $1.42{\pm}0.09m$ of RFI(right foot impact). There was no significance difference statically between the two groups. 3. The velocity of heel on impact was 1.13m/s in the skilled group and 1.23m/s in the unskilled group, when each angle of knee was $110.4{\pm}10.9deg/s$, $114.8{\pm}28.4deg/s$. The maximum velocity of each performance was reached before the RKF, and the velocity and angle at impact along by two groups did not show any significant difference statically. 4. In the angular velocity of just RKF of lower leg, there was significance difference statically between the two groups(p<.05).

Body Sway as a Possible Indicator of Fatigue in Clerical Workers

  • Volker, Ina;Kirchner, Christine;Bock, Otmar Leo;Wascher, Edmund
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.206-210
    • /
    • 2015
  • Background: Fatigue has a strong impact on workers' performance and safety, but expedient methods for assessing fatigue on the job are not yet available. Studies discuss posturography as an indicator of fatigue, but further evidence for its use in the workplace is needed. The purpose of the study is to examine whether posturography is a suitable indicator of fatigue in clerical workers. Methods: Thirty-six employees (${\emptyset}$ 34.8 years, standard deviation = 12.5) participated in postural tasks (eyes open, eyes closed, arm swinging, and dual task) in the morning and afternoon. Position of their center of pressure (COP) was registered using a Nintendo Wii Balance Board and commercial software. From registered COP time series, we calculated the following parameters: path length (mm), velocity (mm/s), anterior-posterior variance (mm), mediolateral variance (mm), and confidence area ($mm^2$). These parameters were reduced to two orthogonal factors in a factor analysis with varimax rotation. Results: Statistical analysis of the first factor (path length and velocity) showed a significant effect of time of day: COP moved along a shorter path at a lower velocity in the afternoon compared with that in the morning. There also was a significant effect of task, but no significant interaction. Conclusion: Data suggest that postural stability of clerical workers was comparable in the morning and afternoon, but COP movement was greater in the morning. Within the framework of dynamic systems theory, this could indicate that the postural system explored the state space in more detail, and thus was more ready to respond to unexpected perturbations in the morning.

Embriological study of Viscera and Bowels on the view: Viscera and Bowels form Triple energizers to be five-viscera and six-bowels (오장오부(五藏五府)에서 삼초(三焦)를 형성(形成)하여 오장육부(五藏六府)가 되는 장부(藏府)의 발생학적(發生學的) 연구(硏究))

  • Kim, Kyoung-Shin;Lee, Tae-Kyoung;Kang, Jung-Soo;Kim, Byoung-Soo
    • Journal of Korean Medical classics
    • /
    • v.22 no.4
    • /
    • pp.55-66
    • /
    • 2009
  • The formative procedure of five-viscera has been explained for the restriction[相克; 己勝] and the reverse restriction[相侮, 勝己] in five phase theory on the medical literatures from ancient times. In the formative procedure of five-viscera, it would seem that two theories are mutually contradictory. But this problem is solved in the view: As the upward, downward movement and the circulation progress, five-viscera and five-bowels develop. In brief on the formative procedure of human viscera and bowels, first, the circulation of five-viscera and five-bowels forms three phase of upper-middle-lower(fire-earth-water), and these phases generate Triple energizers[Samcho, 三焦], consequently it is to be five-viscera and six-bowels, to be formed 'Meridian and collateral[Gyeongnak, 經絡]' in that order. The triple energizers is situated in middle stage of formation of 'Vicera' and 'Meridian and collateral' on developing stage. It would be thought that Triple energizer meridian[Susoyangsamchogyeong, 手少陽三焦經] is formed in procedure of Meridian and collateral after formation of upper-middle-lower of the triple energizers.

  • PDF

A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases (회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계)

  • Pyo, Sang-Hun;Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.