• 제목/요약/키워드: human motions

검색결과 353건 처리시간 0.03초

Analysis of Kinematic Mapping Between an Exoskeleton Master Robot and a Human Like Slave Robot With Two Arms

  • Song, Deok-Hee;Lee, Woon-Kyu;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2154-2159
    • /
    • 2005
  • This paper presents the kinematic analysis of two robots, an exoskeleton type master robot and a human like slave robot with two arms. Two robots are designed and built to be equivalent as motion following robots. The operator wears the exoskeleton robot to generate motions, then the slave robot is required to follow after the motion of the master robot. However, different kinematic configuration yields position mismatches of the end-effectors. To synchronize motions of two robots, kinematic analysis of mapping is analyzed. The forward and inverse kinematics have been simulated and the corresponding experiments are also conducted to confirm the proposed mapping analysis.

  • PDF

관성 센서와 지자계 센서를 사용한 인체 방향 추적 시스템 (Human Body Orientation Tracking System Using Inertial and Magnetic Sensors)

  • 최호림;유문호;양윤석
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권2호
    • /
    • pp.118-126
    • /
    • 2011
  • This study proposes a human body orientation tracking system by inertial and earth magnetic sensors. These sensors were fused by indirect Kalman filter. The proposed tracking system was configured and the filter was implemented. The tracking performance was evaluated with static and dynamic tests. In static test, the sensor was fixed on the floor while its static characteristics was analyzed. In dynamic test, the sensor was held and moved manually for 30 seconds. The dynamic test included x, y, z axis rotations, and elbow flection/extension motions that mimic drinking. For these dynamic motions, the tracking angle error was under $4.1^{\circ}$ on average. The proposed tracking method is expected to be useful for various human body motion analysis.

진화 알고리즘을 사용한 인간형 로봇의 동작 모방 학습 및 실시간 동작 생성 (Motion Imitation Learning and Real-time Movement Generation of Humanoid Using Evolutionary Algorithm)

  • 박가람;나성권;김창환;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1038-1046
    • /
    • 2008
  • This paper presents a framework to generate human-like movements of a humanoid in real time using the movement primitive database of a human. The framework consists of two processes: 1) the offline motion imitation learning based on an Evolutionary Algorithm and 2) the online motion generation of a humanoid using the database updated bγ the motion imitation teaming. For the offline process, the initial database contains the kinetic characteristics of a human, since it is full of human's captured motions. The database then develops through the proposed framework of motion teaming based on an Evolutionary Algorithm, having the kinetic characteristics of a humanoid in aspect of minimal torque or joint jerk. The humanoid generates human-like movements far a given purpose in real time by linearly interpolating the primitive motions in the developed database. The movement of catching a ball was examined in simulation.

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.

A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions

  • Ryoo, Hee Jae;Lee, Chan Woo;Han, Jong Won;Kim, Wook;Choi, Dukhyun
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.312-322
    • /
    • 2020
  • As the use of mobile devices increase, there is public interest in the utilization of the human motion generated mechanical energy. The human motion generated mechanical energies vary depending on the body region, type of motion, etc., and an appropriate device has to be designed to utilize them effectively. In this work, a device based on the principles of triboelectric generation and inertia was assessed in order to utilize the multi-axial mechanical energies generated by human motions. To improve the output performance we confirm the changes in the output that vary with the structural design, the reasons for such changes, and variations in performance based on the parts of the human body. In addition, the level of electrical energy generated based on motion type was measured; a maximum voltage of 30 V and a current of 2 ㎂ were generated. Finally, the proposed device was utilized in LEDs used for lighting, thus demonstrating that multi-axial mechanical energies can be harvested effectively. Based on the results, we expect that the developed device can be utilized as a sensor to detect mechanical energies, to sense changes in motion, or as a generator for auxiliary power supply for mobile devices.

잡기 동작에서 손가락 동작의 상관관계 분석 (Correlation analysis of finger movements in dynamic hand grasping)

  • 류태범;윤명환
    • 대한인간공학회지
    • /
    • 제20권3호
    • /
    • pp.11-25
    • /
    • 2001
  • AS human movements have the inherent property of anticipating target and can be coordinated to realize a given schedule, finger movements have stereotyped patterns during hand grasping. Finger movements have been studied in the past to find out the coordination pattern of hand joint angular movement. These studies analyzed only a few finger joints for a limited number of hand postures. This study investigated fourteen joint angles during eight hand-grasping motions to analyze the angular correlations between finger joints and to suggest motion factors which represent hand grasping. Hand grasping motions including forward arm motion were examined in ten healthy volunteers. Eight objects were used to represent real hand grasping tasks. $CyberGlove^{TM}$ and $Fasreack^{TM}$ measured hand joint angles and wrist origin. Joint angle correlations between PIJ(proximal interphalangeal joint) and MPJ(metacarpophalangeal joint) at one finger, between neighboring PIJs and MPJs were four factors related to the fast phase of hand grasping motions and eight factors related to the slow phase of hand grasping motions.

  • PDF

Experimental study on human arm motions in positioning

  • Shibata, S.;Ohba, K.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.212-217
    • /
    • 1993
  • In this paper, characteristics of the motions of a human arm are investigated experimentally. When the conditions of the target point are restricted, human adjusts its trajectory and velocity pattern of the arm to fit the conditions skillfully. The purpose of this work is to examine the characteristics of the trajectory, velocity pattern, and the size of the duration in the following cases. First, we examine the case of point-to-point motion. The results are consistent with the minimum jerk theory. However, individual differences in the length of the duration can be observed in the experiment. Second, we examine the case which requires accuracy of positioning at the target point. It is found that the velocity pattern differs from the bell shaped pattern explained by the minimum jerk theory, and has its peak in the first half of the duration. When higher accuracy of the positioning is required, learning effects can be observed. Finally, to examine the case which requires constraint of the arm posture at the target point, we conduct experiments of a human trying to grasp a cup. It is considered that this motion consists of two steps : one is the positioning motion of the person in order to start the grasping motion, the other is the grasping motion of the human's hand approaching toward the cup and grasping it. In addition, two representative velocity patterns are observed : one is the similar velocity pattern explained in the above experiment, the other is the velocity pattern which has its relative maximum in the latter half of the duration.

  • PDF

인간이 경량벽체에 가하는 수평하중의 크기에 관한 연구 (Characteristics of the Human Strength Acting on the Lightweight Wall of Buildings)

  • 최수경;노용운;김상헌;이영도
    • 한국건축시공학회지
    • /
    • 제15권5호
    • /
    • pp.473-481
    • /
    • 2015
  • 공동주택의 구조형식이 점차 기둥식 구조로 바뀌면서 비내력 경량벽체의 수요가 증가하고 있다. 경량벽체는 구조적 안전을 위해 소정의 내력을 확보할 필요가 있다. 본 연구에서는 경량벽체의 정적 수평하중저항성 및 내충격성 시험방법의 기초자료로서 활용하기 위해 인간이 벽체에 가하는 힘을 실험적으로 파악하였다. 정적하중을 가하는 동작으로는 양손 밀기, 어깨 밀기, 등 기대기, 한 손 기대기의 4종류를 설정하였다. 동적하중을 가하는 동작으로는 발뒤꿈치차기, 어깨 부딪치기, 주먹치기의 3종류를 설정하였다. 하중해석 장치의 하중판 강성은 20kN/cm, 4.7kN/cm, 2.2kN/cm의 3종류로 설정하였다. 정적하중 해석결과로부터, 동작별 최대하중비(Pmax/W)는 양손 밀기의 경우 1.17~1.25, 어깨 밀기의 경우 0.95~0.99, 등 기대기의 경우 0.16~0.18, 한 손 기대기의 경우 0.12~0.15인 것을 알 수 있었다. 또한 동적하중 해석결과로부터, 동작별 최대하중비(Pmax/W)의 상한 값은 발차기의 경우 약 10.07, 어깨 부딪치기의 경우 4.46, 주먹치기의 경우 약 5.58인 것을 알 수 있었다.

Development of Face Robot Actuated by Artificial Muscle

  • Choi, H.R.;Kwak, J.W.;Chi, H.J.;Jung, K.M.;Hwang, S.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1229-1234
    • /
    • 2004
  • Face robots capable of expressing their emotional status, can be adopted as an e cient tool for friendly communication between the human and the machine. In this paper, we present a face robot actuated with arti cial muscle based on dielectric elastomer. By exploiting the properties of polymers, it is possible to actuate the covering skin, and provide human-like expressivity without employing complicated mechanisms. The robot is driven by seven types of actuator modules such as eye, eyebrow, eyelid, brow, cheek, jaw and neck module corresponding to movements of facial muscles. Although they are only part of the whole set of facial motions, our approach is su cient to generate six fundamental facial expressions such as surprise, fear, angry, disgust, sadness, and happiness. Each module communicates with the others via CAN communication protocol and according to the desired emotional expressions, the facial motions are generated by combining the motions of each actuator module. A prototype of the robot has been developed and several experiments have been conducted to validate its feasibility.

  • PDF

깊이 맵과 HMM을 이용한 인식 시스템 구현 (Implementation of a 3D Recognition applying Depth map and HMM)

  • 한창호;오춘석
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.119-126
    • /
    • 2012
  • 최근 연구에서 모션 인식을 위해 여러 가지 인식 알고리즘을 사용하였다. 예를 들면, HMM, DTW, PCA 등의 기법을 이용하여 권투 모션을 인식하는 방법을 제시했다. 이러한 방법을 이용하기 위해서 연기자로부터 3차원 데이터를 얻기 위해 액티브 마커를 사용하여 손의 위치를 얻는다. 얻은 2차원 위치 정보는 다시 스테레오 기법을 이용하여 3차원 정보로 전환하여 구한다. 본 논문에서는 3차원 모션 데이터를 얻는 방법을 깊이 맵에 대한 알고리즘을 이용하여 구하였다. 그리고 3차원 위치 데이터 정보의 정확성 나타냈으며, 그리고 모션 동작에 대한 인식을 실험을 하였고, 그 실험 결과에 대해서 언급했다.