• 제목/요약/키워드: human leukemia HL-60 cells

검색결과 159건 처리시간 0.032초

제니스틴에 의한 방사선유발 세포사멸 민감도증가 (Sensitization of Radiation-Induced Cell Death by Genistein)

  • 김태림;김인규
    • 방사선산업학회지
    • /
    • 제4권1호
    • /
    • pp.91-94
    • /
    • 2010
  • A number of epidemiological studies as well as biological experiments, showed that genistein, one of the isoflavone, prevents prostate cancer occurrence. In this study, we showed that genistein inhibited the cell proliferation of human promyeoltic leukemia HL-60 cells and induced G2/M phase arrest. In addition, combination of genistein treatment and ${\gamma}$-irradiation displayed synergistic effect in apoptotic cell death of HL-60 cells. This means that the repair of genistein-induced DNA damage was hindered by ${\gamma}$-radiation and thus cell death was increased. In conclusion, genistein is one of the important chemicals that sensitize radiation-induced cell death.

L-ASCORBIC ACID AND ARSENIC TRIOXIDE EXERT THE SYNERGISTIC EFFECT TO INDUCE THE GROWTH ARREST AND THE APOPTOSIS OF HUMAN ACUTE PROMYELOCYTIC LEUKEMIA, HL-60 VIA MODULATING REDOX STATUS, MAPK PATHWAY AND APOPTOSIS-RELATED FACTORS

  • Seong-Su Han;Sook J. Lee;Seung-Tae Chung;Juno H. Eom;Young-Joon Surh;Hye K. Park;Mary H. Park;Won S. Kim;Kihyun Kim
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.145-146
    • /
    • 2001
  • There are increasing evidences that L-ascorbic acid (LAA) is selectively toxic to some types of tumors at physiological concentrations as a prooxidant, rather than antioxidant. However, the mechanism by which LAA initiates cellular signaling toward cell death is still unclear. Therefore, to determine whether LAA might be useful for the treatment of human acute promyelocytic leukemia (APL), HL-60 cells, the effects of LAA on proliferation, redox system, MAPK and induction of apoptotic cascades were investigated.(omitted)

  • PDF

In Vitro Studies on Phytochemical Content, Antioxidant, Anticancer, Immunomodulatory, and Antigenotoxic Activities of Lemon, Grapefruit, and Mandarin Citrus Peels

  • Diab, Kawthar AE
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3559-3567
    • /
    • 2016
  • Background: In recent years, there has been considerable research on recycling of agro-industrial waste for production of bioactive compounds. The food processing industry produces large amounts of citrus peels that may be an inexpensive source of useful agents. Objective: The present work aimed to explore the phytochemical content, antioxidant, anticancer, antiproliferation, and antigenotxic activities of lemon, grapefruit, and mandarin peels. Materials and Methods: Peels were extracted using 98% ethanol and the three crude extracts were assessed for their total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity using DPPH (1, 1-diphenyl-2-picrylhydrazyl). Their cytotoxic and mitogenic proliferation activities were also studied in human leukemia HL-60 cells and mouse splenocytes by CCK-8 assay. In addition, genotoxic/antigenotoxic activity was explored in mouse splenocytes using chromosomal aberrations (CAs) assay. Results: Lemon peels had the highest of TPC followed by grapefruit and mandarin. In contrast, mandarin peels contained the highest of TFC followed by lemon and grapefruit peels. Among the extracts, lemon peel possessed the strongest antioxidant activity as indicated by the highest DPPH radical scavenging, the lowest effective concentration 50% ($EC_{50}=42.97{\mu}g\;extract/mL$), and the highest Trolox equivalent antioxidant capacity (TEAC=0.157). Mandarin peel exhibited moderate cytotoxic activity ($IC_{50}=77.8{\mu}g/mL$) against HL-60 cells, whereas grapefruit and lemon peels were ineffective anti-leukemia. Further, citrus peels possessed immunostimulation activity via augmentation of proliferation of mouse splenocytes (T-lymphocytes). Citrus extracts exerted non-cytotoxic, and antigenotoxic activities through remarkable reduction of CAs induced by cisplatin in mouse splenocytes for 24 h. Conclusions: The phytochemical constituents of the citrus peels may exert biological activities including anticancer, immunostimulation and antigenotoxic potential.

오미자로부터 분리된 화합물의 암세포 증식 억제 효과 (The Antiproliferative Effects of Compounds Isolated from Schisandra chinensis)

  • 서원세;박소연;민병선;김세현;송정호;심상희
    • 한국식품과학회지
    • /
    • 제46권6호
    • /
    • pp.665-670
    • /
    • 2014
  • 오미자 추출물의 n-hexane 분획으로부터 open column chromatography, 분취용 HPLC 등 여러 가지 크로마토그라피를 이용하여 총 15종의 화합물을 분리하였다. 분리된 화합물들은 각각의 기기분석 데이터를 문헌치와 비교하여, 각각 wuweizisu C (1), gomisin N (2), deoxyschisandrin (3), gomisin A (4), schisandrin (5), chamigrenal (6), schisanlactone D (7), methylgomisin O (8), angeloylgomisin O (9), (-)-gomisin $L_2$ (10), schisandronic acid (11), (-)-gomisin $L_1$ (12), (+)-gomisin $K_3$ (13), gomisin J (14), tigloylgomisin H (15)으로 동정하였다. 이들 중 methylgomisin O (8)는 이 식물에서 처음으로 분리되었다. 분리된 화합물들은 HL-60 (human leukemia), HeLa (human cervical carcinoma) 및 MCF-7 (breast cancer cells) 세포주에 대하여 세포독성 실험을 실시하였다. 그 결과 화합물 7, 8 및 9는 HL-60 세포주에 대하여 각각 7.37, 6.60 및 $8.00{\mu}M$$IC_{50}$로 비교적 강한 세포독성 효과를 나타냈다. 화합물 6은 MCF-7에 대하여 $IC_{50}$ $30.50{\mu}M$로 적정한 세포독성을 나타냈다. 그리고 화합물 8은 HeLa cells에 대하여 $IC_{50}$ $1.46{\mu}M$로 비교적 강한 세포 독성으로 나타냈다.

Effect of Nardostachyos Rhizoma on Apoptosis, Differentiation and Proliferation in HL-60 cells

  • Ju Sung-Min;Lee Jun;Choi Ho-Seung;Yoon Sang-Hak;Kim Sung-Hoon;Jeon Byung-Hun
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.163-170
    • /
    • 2006
  • Nardostachyos Rhizoma (N. Rhizoma) belonging to the family Valerianaceae has been anti-arrhythmic effect, and sedation to the central nerve and a smooth muscle. We reported that the water extract of N. Rhizoma induced apoptotic cell death and differentiation in human promyelocytic leukemia (HL-60) cells. Cytotoxicity of N. Rhizoma was detected only in HL-60 cells (IC50 is about 200 ${\mu}g/ml$). The cytotoxic activity of N. Rhizoma in HL-60 cells was increased in a dose-dependent manner. We used several measures of apoptosis to determine whether these processes were involved in N. Rhizoma-induced apoptotic cell death. The high-dose (200 ${\mu}g/ml$) treatment of N. Rhizoma to HL-60 cells showed cell shrinkage, cell membrane blobbing, apoptotic bodies, and the fragmentation of DNA, suggesting that these cells underwent apoptosis. Treatment of HL-60 cells with N. Rhizoma time-dependently induced activation of caspase-3, caspase-8, and caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase. Also, we investigated the effect of N. Rhizoma on cellular differentiation and proliferation in HL-60 cells. Differentiation and proliferation of HL-60 cells was determined through expression of CD11b and CD14 surface antigens using flow cytometry and nitroblue tetrazolium (NBT) assay, and through analysis of cell cycle using propidium iodide assay, respectively. N. Rhizoma induced the differentiation of HL-60 at the low-dose (100 ${\mu}g/ml$) treatment, as shown by increased expression of differentiation surface antigen CD11b, but not CDl4 and increased reducing activity of NBT. When HL-60 cells were treated with N. Rhizoma at concentration of $50{\mu}g/ml\;and\;100{\mu}g/ml$, NBT-reducing activities induced approximately 1.5-fold and 20.0-fold as compared with the control. In contrast, HL-60 cells treated with the N. Rhizoma-ATRA combination showed markedly elevated levels of 26.3-fold at $50{\mu}g/ml$ N. Rhizoma-0.1 ${\mu}M$ ATRA combination and 27.5-fold at 50 ${\mu}g/ml$ N. Rhizoma-0.2 ${\mu}M$ ATRA combination than when treated with N. Rhizoma alone or ATRA alone. It may be that N. Rhizoma plays important roles in synergy with ATRA during differentiation of HL-60 cells. DNA flow-cytometry indicated that N. Rhizoma markedly induced a G1 phase arrest of HL-60 cells. N. Rhizoma-treated HL-60 cells increased the cell population in G1 phase from 32.71% to 42.26%, whereas cell population in G2/M and S phases decreased from 23.61% to 10.33% and from 37.78% to 33.98%, respectively. We examined the change in the $p21^{WAF1/Cip1}\;and\;p27^{Kip1}$ proteins, which are the CKIs related with the G1 phase arrest. The expression of the CDK inhibitor $p27^{Kip1},\;but\;not\;p21^{WAF1/Cip1}$ were markedly increased by N. Rhizoma. Taken together, these results demonstrated that N. Rhizoma induces apoptotic cell death through activation of caspase-3, and potently inhibits the proliferation of HL-60 cells via the G1 phase cell cycle arrest in association with $p27^{Kip1}$ and granulocytic differentiation induction .

백화사설초(白花蛇舌草) 메탄올 추출물(抽出物)의 항종양(抗腫瘍) 효과(效果) 및 항암(抗癌) 기전(機轉)에 관(關)한 연구(硏究) (Study of Hedyotis Diffusa Methanol Extract on Anti-tumoral Effect and Mechanism)

  • 노훈정;문구;문석재;원진희;문영호;박래길
    • 대한한방종양학회지
    • /
    • 제6권1호
    • /
    • pp.81-97
    • /
    • 2000
  • Objectives: This experimental study was carried out to evaluate the effects of aqueous and methanol extracts of Hedyotis diffusa which has long been used for cancer treatment in oriental medicines on the induction of apoptotic cell death in human lymphoid leukemia cell line, HL-60. Methods: Cells were treated with various concentrations (200 to $0.4{\mu}g$) and periods (6 to 30 hr) of $H_2O$ and methanol extracts of Hedyotis diffusa. Then, cells were tested for viability by MTT assay. Cells wrere treated with $200{\mu}g/ml$ of methanol extract fork various periods. Genomic DNA was isolated, separated, on 1.5% agarose gels, stained with ethidium bromide and visualized under UV light. Cells were treated with $200{\mu}g/ml$ of each extract for 16 hr. Then, cells were treated with Hoechst dye 33342 and observed by fluorescence microscopy. Cells were treated with various doses of each for 12 hr and $100{\mu}g/ml$ of methanol extract for various periods. Lysate from the cells used to measure the activity of Caspase-1 and-3 proteases by using fluorogenic peptide substrates including acetyl-YVAD-AMC and acetyl-DEVD-AMC, respectively. Cells were treated with $200{\mu}g/ml$ of each extract for various periods. Cell lysates were immunoprecipated with anti-JNKl antibodies. The immune complex was reacted with $32^p-ATP$ and c-Jun as a substrate. The phosphotransferase activity of JNKI was measured by using PhosphoImage analyzer (Fuji Co., Japan). Nuclear extracts were isolated and incubated with oligonucleotide probe of $NF-{\kappa}B$. Transcriptional activation of ${\kappa}B$ was measured by using EMSA and visualized by PhosphoImage analyzer (Fuji Co, Japan). Cell lysates were prepared and analyzed by Western blotting with anti-Bc12 antibodies and anti-Bax antibodies. Cells were pretreated with various doses of methanol extract for 2 hr. Then, the extract was removed by centrifugation. Cells were resuspended with RPMI-1640 media containing 0.3% agarose, 10% FBS, overlayred onto bottom layer agarose and incubated at $CO_2$ incubator for 6 days. The number of colony was counted under light microscopy ($\time100$). Results: The death of HL-60 cells was markedly induced by the addition of methanol extract of Hedyotis diffusa in a dose and time-dependent manners. The apoptotic characteristic ladder pattern of DNA strand break was observed in death of HL-60 cells. In addition, it was shown nucleus chromatin condensation and fragmentation under Hoechst staining. Therefore, Hedyotis diffusa extract-induced death of HL-60 cells is mediated by apoptotic signaling processes. The activity of Caspase 3-like proteases remained in a basal level in HL-60 cells treated with aqueous extract of Hedyotis diffusa. However, it was markedly increased in HL-60 cells treated with methanol extract of Hedyotis diffusa. In addition, the phosphotransferase activity of JNKl was increased in HL-60 cells treated with methanol extract of Hedyotis diffusa. Furthermore, the activation of transcriptional activator, $NF-{\kappa}B$ was markedly induced by methanol extract of Hedyotis diffusa. Anti-apoptotic Bc12 was cleaved into 23Kda fragment by treatment of methanol extract of Hedyotis diffusa. However, expression of proapoptotic Bax protein was increased by treatment of methanol extract of Hedyotis diffusa in a time-dependent manner. Furthermore, methanol extract markedly inhibited the colony forming efficiency of HL-60 cells in semisolid agar culture. Conclusions: Above results suggest that methanol extract of Hedyotis diffusa induces the apoptotic death of human leukemic HL-60 cells via activations of Caspase-3 proteases, JNKI, transcriptional activator $NF-{\kappa}B$, In addition, our results also suggest that methanol extract of Hedyotis diffusa reduces the malignant potential of HL-60 cells via down regulation of colony forming effciency through cleavage of Bc12 as well as induction of Bax.

  • PDF

항 백혈병작용에 관련된 천연물의 자료조사 (Review of Anti-Leukemia Effects from Medicinal Plants)

  • 배현옥;임창경;장선일;한동민;안원근;윤유식;전병훈;김원신;윤용갑
    • 동의생리병리학회지
    • /
    • 제17권3호
    • /
    • pp.605-610
    • /
    • 2003
  • 인삼, 호장근, 상산 등에서 분리한 성분들이 HL60, HL-60, Jurkat, Molt-4에 대한 억제작용이 있는 것으로 조사되었고, 익모초의 Leonunrine, 대청엽의 Indirubin, 천문동의 Aspargus polysaccharideA.B.C.D, 백합의 Colchicnamile, 익모초의 Lenunrine, 산두근, 자초근 추출물이 여러유형의 백혈병 환자에 대한 백혈병 억제효과가 있는 것으로 조사되었으며, mouse의 P388, L1210, L615, L120, S-180 등에 항 백혈병 효과가 있는 것으로는 완화, 로회, 원지, 오수유, 파두, 뇌공등, 석산, 백출, 단삼, 산약, 목단피, 청대, 감초, 당귀에서 분리한 성분들이 있으며 백굴채, 마전자, 가시오가피, 천초 추출물들이 동물실험에서 항암작용이 있는 것으로 조사되었다. 또 천연물에서 분리한 성분이 항백혈병 작용이 있는것으로는 ginsenoside Ro, ginseonoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, 당귀다당체, Aspargus polysaccharideABCD, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, G2 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A, 13 oxyingenol Kansuiphorin B 등이 조사되었고, 추출물이 항 백혈병 작용이 있는 것으로는 원지, 오수유, 백굴채, 대황, 산두근, 마전자, 가시오가피, 천초 등이 조사되었다.

당유자 과피 추출물에 의한 HL60 세포의 Apoptosis 유도 (Induction of Apoptosis by Citrus grandis Osbeck Peel (CGP) Extract in HL60 Cells)

  • 현재석;강성명;김아름다슬;오명철;오창경;김동우;전유진;김수현
    • 한국식품영양과학회지
    • /
    • 제38권10호
    • /
    • pp.1317-1323
    • /
    • 2009
  • 당유자 과피(GGP) 80% 에탄올 추출물을 4종의 암세포에 (피부암, 대장암, 유방암 및 혈액암) 처리하여 증식 억제 활성을 측정한 결과, 혈액암 HL60 세포에서 높은 증식 억제 활성을 보였다. 이에 CGP 추출물이 HL60 세포에 대한 apoptosis 유도에 따른 세포 증식 억제 활성을 조사하였다. Apoptosis 유도의 첫 단계인 막 투과성을 측정한 결과, confocal image와 flow cytometry에서 CGP를 처리하였을 때 탈분극 현상에 따른 막 투과성이 증가하였고 세포내 핵을 hoechst 33342를 이용하여 염색하였을 때 apoptosis가 일어났을 때 나타나는 전형적인 형태의 apoptotic body가 농도 의존적으로 증가하는 것을 확인할 수 있었으며 flow cytometry를 통하여 세포 주기를 측정하였을 때 DNA-hypodiploid 형태의 sub-G1가 CGP 농도 의존적으로 증가하는 것을 확인할 수 있었다. Apoptosis 유도 기전을 western blot으로 측정한 결과를 보면, CGP 추출물을 혈액암 HL60 세포에 처리하였을 때 Bcl family의 anti-apoptotic Bcl-2 단백질의 감소와 pro-apoptotic Bax 단백질의 증가로 인하여 하위 기전인 caspase-3가 활성화되었으며, 이 활성화로 인하여 apoptosis 유도에 직접적으로 관여하는 PARP 단백질을 활성화시키면서 apoptosis를 유도하였다. 따라서 당유자 과피는 항암과 관련되어진 기능성식품 및 소재 개발 원료로서 개발이 가능하리라고 사료된다.

Interferon consensus sequence binding protein : Not essential for interferon α-mediated antiviral response to vesicular stomatitis virus infection in HL-60 cells

  • Park, Byung-Kiu
    • IMMUNE NETWORK
    • /
    • 제1권2호
    • /
    • pp.109-115
    • /
    • 2001
  • Background: The role of the interferon consensus sequence binding protein (ICSBP), a member of interferon regulatory factor family, in protecting against a vesicular stomatitis virus (VSV) infection has not been firmly elucidated. Thus, it was investigated utilizing the human promyelocytic leukemia HL-60 cells which do not express ICSBP. Methods: HL-60 cells were stably transfected with plasmid containing cDNA for either ICSBP or DNA binding domain (DBD) and tested for their VSV-susceptibilities. The susceptibility of each transfectant group to a VSV infection was determined by a plaque assay at 1 h, 24 h, and 48 h post-infection in the presence (500 IU/ml) or absence of interferon ${\alpha}$ ($IFN{\alpha}$). Results: In the absence of $IFN{\alpha}$, the three groups showed similar sensitivities to a VSV infection. However, when pre-treated with IFN, the viral titers in both the ICSBP and control clones steadily decreased over 48 h of incubation, indicating the existence of $IFN{\alpha}$-mediated protection against VSV infection. The $IFN{\alpha}$-treated ICSBP clones appeared to be more resistant to infection compared with the control clones, although the difference was not great. On the contrary, the viral titers in the $IFN{\alpha}$-treated DBD clones increased at 24 h then decreased by 48 h. Conclusion: The expression of truncated ICSBP (DBD) does not appear to underlie the impaired protection against a VSV infection in the DBD clones, since even the control clones lacking ICSBP were protected from a VSV infection. This suggests that ICSBP does not play a critical role in the $IFN{\alpha}$- mediated anti-VSV response of HL-60 cells, although it appears to confer some resistance to a VSV infection.

  • PDF

Recovery of Genes Epigenetically Altered by the Histone Deacetylase Inhibitor Scriptaid and Demethylating Agent 5-Azacytidine in Human Leukemia Cells

  • Park, Eun-Kyung;Jeon, Eun-Hyung;Kim, In-Ho;Park, Seon-Yang
    • Genomics & Informatics
    • /
    • 제8권4호
    • /
    • pp.185-193
    • /
    • 2010
  • Histone deacetylation and demethylation are epigenetic mechanisms implicated in cancer. Studies regarding the role of modulation of gene expression utilizing the histone deacetylase inhibitor scriptaid and the demethylating agent 5-azacytidine in HL-60 leukemia cells have been limited. We studied the possibility of recovering epigenetically silenced genes by scriptaid and 5-azacytidine in human leukemia cells by DNA microarray analysis. The first group was leukemia cells that were cultured with 5-azacytidine. The second group was cultured with scriptaid. The other group was cultured with both agents. Two hundred seventy newly developed genes were expressed after the combination of 5-azacytidine and scriptaid. Twenty-nine genes were unchanged after the combination treatment of 5-azacytidine and scriptaid. Among the 270 genes, 13 genes were differed significantly from the control. HPGD, CPA3, CEACAM6, LOC653907, ETS1, RAB37, PMP22, FST, FOXC1, and CCL2 were up-regulated, and IGLL3, IGLL1, and ASS1 were down-regulated. Eleven genes associated with oncogenesis were found among the differentially expressed genes: ETS1, ASCL2, BTG2, BTG1, SLAMF6, CDKN2D, RRAS, RET, GIPC1, MAGEB, and RGL4. We report the results of our leukemia cell microarray profiles after epigenetic combination therapy with the hope that they are the starting point of selectively targeted epigenetic therapy.