• Title/Summary/Keyword: human hepatoma cell

Search Result 129, Processing Time 0.023 seconds

Sulforaphane is Superior to Glucoraphanin in Modulating Carcinogen-Metabolising Enzymes in Hep G2 Cells

  • Abdull Razis, Ahmad Faizal;Noor, Noramaliza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4235-4238
    • /
    • 2013
  • Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 ${\mu}M$) for 24 hours. Glucoraphanin at higher concentration (25 ${\mu}M$) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 ${\mu}M$. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen-metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.

Conjugated Linoleic Acid Changes fatty Acid Composition by Decreasing Monounsaturated fatty Acids in Rabbits and Hep G2 Cells

  • Nam, Kisun
    • Journal of Nutrition and Health
    • /
    • v.30 no.4
    • /
    • pp.442-450
    • /
    • 1997
  • Conjugated dienoic derivatives of linoleic acid(CLA) are a mixture of positional and geometric isomers of linoleic acid(LA). We previously found that CLA changes the fatty acid profile in chicken eggs and serum by decreasing monounsaturated fatty acids. Studies were conducted to explore the effects of CLA on fatty acid composition. Rabbits were fed a semisynthetic diet with or without CLA(0.5g CLA/rabbit/day) for 22 weeks. Compared to the control, rabbits fed CLA had significantly lower monounsaturated fatty acid levels(palmitoleic acid Cl6 : 1 by 50% and oleic acid Cl8 : 1, by 20%) in plasma lipids. We found similar differences in fatty acid composition in the liver and the aorta. The inhibitory effect of CLA on $\Delta$9 desaturation was confirmed in a human hepatoma cell line, Hep G2. CLA significantly decreased $\Delta$9 desaturation in 4-5 hours as shown by an increase in the ratio of Cl6 : 0 to C 16 1, This is apparently due to a decrease in $\Delta$9 desaturase(stearoyl-CoA desaturase, SCD) activity ; it was decreased more than 50%. These results, along with our previous findings, indicate that CLA is an inhibitor of $\Delta$9 desaturase in the liver.

  • PDF

Ibuprofen Increases the Hepatotoxicity of Ethanol through Potentiating Oxidative Stress

  • Kim, Minjeong;Lee, Eugenia Jin;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.205-210
    • /
    • 2021
  • Over 30 million prescriptions of NSAIDs (non-steroidal anti-inflammatory drugs) are issued every year. Considering that these drugs are available without a prescription as over the counter (OTC) drugs, their use will be astronomical. With the increasing use of NSAIDs, their adverse effects are drawing attention. Especially, stomach bleeding, kidney toxicity, liver toxicity, and neurological toxicity are reported as common. Ibuprofen, one of the extensively used NSAIDs along with aspirin, can also induce liver toxicity, but few studies are addressing this point. Here we examined the liver toxicity of ibuprofen and investigated whether co-exposure to ethanol can manifest synergistic effects. We employed 2D and 3D cultured human hepatoma cells, HepG2 to examine the synergistic hepatotoxicity of ibuprofen and alcohol concerning cell viability, morphology, and histology of 3D spheroids. As a result, ibuprofen and alcohol provoked synergistic hepatotoxicity against hepatocytes, and their toxicity increased prominently in 3D culture upon extended exposure. Oxidative stress appeared to be the mechanisms underlying the synergistic toxicity of ibuprofen and alcohol as evidenced by increased production of ROS and expression of the endogenous antioxidant system. Collectively, this study has demonstrated that ibuprofen and EtOH can induce synergistic hepatotoxicity, providing a line of evidence for caution against the use of ibuprofen in combination with alcohol.

Mechanism of Apoptosis Induced by Diazoxide, a $K^{+}$ Channel Opener, in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.305-313
    • /
    • 2004
  • The effect of diazoxide, a $K^{+}$channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular $K^{+}$concentration, and various inhibitors of $K^{+}$channels had no influence on the diazoxide-induced apoptosis; this implies that $K^{+}$channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and this was completely inhibited by the extracellular $Ca^{2+}$ chelation with EGTA, but not by blockers of intracellular $Ca^{2+}$ release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular $Ca^{2+}$ might be due to the activation of a Ca2+ influx pathway. Diazoxide-induced $Ca^{2+}$ influx was not significantly inhibited by either voltage-operative $Ca^{2+}$ channel blockers (nifedipinen or verapamil), or by inhibitors of $Na^{+}$, $Ca^{2+}$-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a $Ca^{2+}$-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a $Ca^{2+}$ influx through the activation of $Ca^{2+}$-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.

Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities

  • Alshaibani, Muhanna M.;MohamadZin, Noraziah;Jalil, Juriyati;Sidik, Nik Marzuki;Ahmad, Siti Junaidah;Kamal, Nurkhalida;Edrada-Ebel, RuAngelie
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1249-1256
    • /
    • 2017
  • In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Leu-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Phe-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Phe)$, and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

Apoptotic Effect of Extract from Artemisia annua Linné by Akt/mTOR/GSK-3β Signal Pathway in Hep3B Human Hepatoma Cells (Hep3B 간암세포에서 개똥쑥추출물로부터 Akt-mTOR-GSK3β 신호경로에 의한 apoptosis 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.764-771
    • /
    • 2016
  • Extracts from Artemisia annua Linné (AAE) have been known to possess various functions, including anti-bacterial, anti-virus, and anti-oxidant effects. However, the mechanism of those effects of AAE is not well-known. The aim of this study was to analyze the inhibitory effects of AAE on cell proliferation of the human hepatoma cell line (Hep3B) and to examine its effects on apoptosis. Activation by phosphorylation of Akt is cell proliferation through the phosphorylation of TSC2, mTOR, and GSK-3β. We suggested that AAE may exert cancer cell apoptosis through Akt/mTOR/GSK-3β signal pathways and mitochondria-mediated apoptotic proteins. For this, we examined the effects of extracts of AAE on cell proliferation according to treatment concentration. Treatment with AAE not only reduced cell viability, but also resulted in the induced release of lactate dehydrogenase (LDH). These results were determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay. Furthermore, we determined the effects of apoptosis through Hoechst 33342 staining, annexinⅤ-propidium iodide (PI) staining, 5,5′, 6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting. Our study showed that the treatment of liver cancer cells with AAE resulted in the inhibition of Akt, TSC2, GSK-3β-phosphorylated, Bcl-2, and pro-caspase 3 and the activation of Bim, Bax, Bak, and cleaved PARP expressions. These results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulate of Akt/mTOR/GSK-3β signaling pathways.

Activation of Antioxidant-Response Element (ARE), Mitogen- Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components during Cell Survival and Death

  • Chen, Chi;Yu, Rong;Owuor, Edward D.;Kong, A.NTony
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2000
  • Green tea polyphenols (GTP) have been demonstrated to suppress tumorigenesis in several chemical-induced animal carcinogenesis models, and predicted as promising chemopreventive agents in human. Recent studies of GTP extracts showed the involvement of mitogen-activated protein kinases (MAPKs) in the regulation of Phase II enzymes gene expression and induction of apoptosis. In the current work we compared the biological actions of five green tea catechins: (1) induction of ARE reporter gene, (2) activation of MAP kinases, (3) cytotoxicity in human hepatoma HepG2-C8 cells, and (4) caspase activation in human cervical squamous carcinoma HeLa cells. For the induction of phase IIgene assay, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) potently induced antioxidant response element (ARE)-mediated luciferase activity, with induction observed at 25 $\mu\textrm{m}$with EGCG. The induction of ARE reporter gene appears to be structurally related to the 3-gallate group. Comparing the activation of MAPK by the five polyphenols, only EGCG showed potent activation of all three MAPKs (ERK, JNK and p38) in a dose- and time-dependent manner, whereas EGC activated ERK and p38. In the concentration range of 25 $\mu\textrm{m}$ to 1 mM, EGCG and ECG strongly suppressed HepG2-ARE-C8 cell-growth. To elucidate the mechanisms of green tea polyphenol-induced apoptosis, we measured the activation of an important cell death protein, caspase-3 induced by EGCG, and found that caspase-3 was activated in a dose- and time-dependent manner. Interestingly, the activation of caspase-3 was a relatively late event (peaked at 16 h), whereas activation of MAPKs was much earlier (peaked at 2 h). It is possible, that at low concentrations of EGCG, activation of MAPK leads to ARE-mediated gene expression including phase II detoxifying enzymes. Whereas at higher concentrations of EGCG, sustained activation of MAPKs such as JNK leads to apoptosis. These mechanisms are currently under investigation in our laboratory. As the most abundant catechin in GTP extract, we found that EGCG potently induced ARE-mediated gene expression, activated MAP kinase pathway, stimulated caspase-3 activity, and induced apoptosis. These mechanisms together with others, may contribute to the overall chemopreventive function of EGCG itself as well as the GTP.

  • PDF

Hepatitis B Virus-Induced TNF-a Expression in Hepa-lc1c7 Mouse Hepatoma Cell Line (마우스 Hepa-1c1c7 세포주에서 B형 간염 바이러스에 의한 tumor necrosis factor-a의 발현 유도)

  • Yea Sung Su;Jang Won Hee;Yang Young-Il;Lee Youn Jae;Kim Mi Seong;Seog Dae-Hyun;Park Yeong-Hong;Paik Kye-Hyung
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.38-44
    • /
    • 2005
  • Infection with hepatitis B virus (HBV) is a major health problem worldwide. Although a tremendous amount has been known about HBV, there have been obstacles in the study of HBV due to the narrow host range of HBV limited to humans and primates. In the present study, we investigated the susceptibility to HBV infection of mouse hepatoma cell line, Hepa-1c1c7. In addition, based on that human hepatocytes infected by HBV increase the expression of the pro-inflammatory cytokine TNF-a, the inducibility of TNF-a expression by HBV in the cells was determined. HBV surface antigen (HBsAg) secretion was measured by the microparticle enzyme immunoassay and steady state mRNA expression was analyzed by quantitative competitive RT-PCR. Transient transfection of Hepa-1c1c7 cells with HBV expression vector resulted in a dose-dependent induction of TNF-a expression. Infection of Hepa-1c1c7 cells with the serum of HBV carrier also increased TNF-a mRNA expression. Both in the transfected and infected cells, HBV mRNA was expressed and significant HBsAg secretion was detected. There was no significant variation in $\beta-actin$ mRNA expression by HBV. These results demonstrate that HBV is infectious to Hepa-lc1c7 in vitro and the viral infection induces TNF-a expression, which suggests that Hepa-lc1c7, a mouse hepatoma cell line, may be a possible model system for analysis of various molecular aspects of HBV infection.

Hepatoprotective Effects of Various Enzyme Hydrolysates from Oysters on Tacrine-Induced Toxicity in Human Hepatoma Cells (타크린으로 유발한 간세포 독성에 대한 효소별 굴 가수분해물의 보호 효과)

  • Park, Hye-Jin;Do, Hyung-Joo;Kim, Ok-Ju;Kim, Andre;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This study investigated the potential hepatoprotective benefits of Crassostrea gigas oyster hydrolysates. Oysters are known to have many biofunctional properties. In particular, oyster enzymatic hydrolysates produce substances with beneficial functions. The potential hepatoprotective effects of C. gigas hydrolysates against damage induced by tacrine were evaluated in vitro in HepG2 cells. Peptides were generated from C. gigas by enzymatic hydrolysis with Neutrase, Flavourzyme, or Protamex enzyme preparations. Tacrine treatment induced considerable cell damage in HepG2 cells, as shown by significant leakage of glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH). Cells treated with C. gigas hydrolysates showed an increased resistance to oxidative challenge compared to control cells, as revealed by higher cell survival against tacrine-induced hepatotoxicity. In addition, treatment with C. gigas hydrolysates reduced the leakage of GOT and LDH. These findings indicate that enzyme hydrolysates derived from C. gigas may be of benefit for developing hepatoprotective foods and drugs.

Effects of KHchunggan-tang on the Nonalcoholic Fatty Liver Disease in Palmitate-induced Cellular Model (Palmitate로 유발된 비알코올성 지방간 모델에 대한 KH청간탕(淸肝湯)의 효과 연구)

  • Han, Chang-Woo;Lee, Jang-Hoon
    • The Journal of Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • Objectives: The aim of this investigation was to evaluate the efficacy of KHchunggan-tang aqueous extract on the experimental nonalcoholic fatty liver disease(NAFLD) induced by palmitate. Materials and Methods: To generate a cellular model of NAFLD, we used HepG2 cells, a human hepatoma cell line, treated with 0.5 mM palmitate. By this cellular model, effects of KHchunggan-tang aqueous extract were evaluated. Intracellular lipid accumulation, free radical formation, and apoptosis were detected by Nile red staining, 2',7'-dichloroflourescin diacetate(H2DCF-DA), and 4',6-diamidino-2-phenylindole(DAPI)/propidium iodide(PI) staining, respectively. Some proteins related with NAFLD were determined by western blot. Results: Typical pathological features of NAFLD occurred in the cellular model. Palmitate increased the levels of intracellular lipid vacuoles, decreased cell viability, and increased apoptosis. Palmitate increased free radical formation and lipid peroxidation, too. However, KHchunggan-tang aqueous extract reduced palmitate-induced pathologic features, i.e. steatosis, free radical formation, and apoptosis. In addition, KHchunggan-tang aqueous extract suppressed palmitate-activated c-Jun N-terminal kinase(JNK) signaling, and SP600125, a JNK inhibitor, significantly reversed the palmitate-induced pathologic changes as KHchunggan-tang aqueous extract. It means that the signaling pathway other than JNK can be involved in the KHchunggan-tang mediated cellular protection of palmitate-treated Hep G2 cells. Conclusions: These results suggest that KHchunggan-tang aqueous extract has hepatoprotective effects on NAFLD with combined properties in cellular steatosis, ROS production, and cytoprotection, and thus may have valuable clinical applications for treatment of this chronic liver disease.