Mechanism of Apoptosis Induced by Diazoxide, a $K^{+}$ Channel Opener, in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo (College of Pharmacy, Duksung Women′s University)
  • Published : 2004.03.01

Abstract

The effect of diazoxide, a $K^{+}$channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular $K^{+}$concentration, and various inhibitors of $K^{+}$channels had no influence on the diazoxide-induced apoptosis; this implies that $K^{+}$channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and this was completely inhibited by the extracellular $Ca^{2+}$ chelation with EGTA, but not by blockers of intracellular $Ca^{2+}$ release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular $Ca^{2+}$ might be due to the activation of a Ca2+ influx pathway. Diazoxide-induced $Ca^{2+}$ influx was not significantly inhibited by either voltage-operative $Ca^{2+}$ channel blockers (nifedipinen or verapamil), or by inhibitors of $Na^{+}$, $Ca^{2+}$-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a $Ca^{2+}$-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a $Ca^{2+}$ influx through the activation of $Ca^{2+}$-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.

Keywords

References

  1. Adams, J. M., and Cory, S.. The BcI-2 protein family: arbiters of cell survival. Science, 281, 1322-1326 (1998) https://doi.org/10.1126/science.281.5381.1322
  2. Aguilar-Bryan, L., Clement, J. P. 4th, Gonzalez, G., Kunjilwar, K., Babenko, A., and Bryan, J., Toward understanding the assembly and structure of $K_{ATP}$channels. Physiol. Rev., 78, 227-245 (1998)
  3. Avdonin, V., Kasuya, J., Ciorba, M. A., Kaplan, B., Hoshi, T., and Iverson, L., Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated $K^{+}$ channels. Proc. Natl. Acad. Sci. U. S. A., 95, 11703-11708 (1998) https://doi.org/10.1073/pnas.95.20.11703
  4. Barbiero, G., Duranti, F., Bonelli, G., Amenta, J. S., and Baccino, F. M., Intracellular ionic variations in the apoptotic death of L cells by inhibitors of cell cycle progression. Exp. Cell Res., 217, 410-418 (1995) https://doi.org/10.1006/excr.1995.1104
  5. Bombeli, T., Karsan, A., Tait, J. F., and Harlan, J. M., Apoptotic vascular endothelial cells become procoagulant. Blood, 89, 2429-2442 (1997)
  6. Bonnefoy-Berard, N., Genestier, L., Flacher, M., and Revillard, J. P, The phosphoprotein phosphatase calcineurin controls calcium-dependent apoptosis in B cell lines. Eur. J. Immunol., 24, 325-329 (1994) https://doi.org/10.1002/eji.1830240208
  7. Bortner, C. D., Hughes, F. M., Jr, and Cidlowski, J. A., A primary role for $K^{+}$ and $Na^{+}$efflux in the activation of apoptosis. J. Biol. Chem., 272, 32436-32442 (1997) https://doi.org/10.1074/jbc.272.51.32436
  8. Cameron, J. S., Lhuillier, L., Subramony, P., and Dryer, S. E., Developmental regulation of neuronal $K^{+}$ channels by target-derived TGF in vivo and in vitro. Neuron, 21, 1045-1053 (1998) https://doi.org/10.1016/S0896-6273(00)80622-4
  9. Challinor-Rogers, J. L., and McPherson, G. A., Potassium channel openers and other regulators of $K_{ATP}$channels. Clin. Exp. Pharmacol. Physiol., 21, 583-597 (1994) https://doi.org/10.1111/j.1440-1681.1994.tb02559.x
  10. Chen, W . H., Yeh, T. H., Tsai, M. C., Chen, D. S., and Wang, T. H., Characterization of $Ca^{2+}$- and voltage-dependent nonselective cation channels in human HepG2 cells. J. Formos. Med. Assoc., 96, 503-510 (1997)
  11. Chin, L. S., Park, C. C., Zitnay, K. M., Sinha, M., DiPatri, A. J. Jr., Perillan, P., and Simard, J. M., 4-Aminopyridine causes apoptosis and blocks an outward rectifier $K^{+}$ channel in malignant astrocytoma cell lines. J. Neurosci. Res., 48, 122-127 (1997) https://doi.org/10.1002/(SICI)1097-4547(19970415)48:2<122::AID-JNR4>3.0.CO;2-E
  12. Cohen, J. J., and Duke, R. C., Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol., 132, 38-42 (1984)
  13. Crompton, N. E., Programmed cellular response in radiation oncology. Acta Oncol., 37 Suppl 11, 1-4 (1998) https://doi.org/10.3109/02841867209129774
  14. Deutsch, C., Potassium channels: basic function and therapeutic aspects. Prog. Clin. Biol. Res., 334, 251-271 (1990)
  15. Distelhorst, C. W, and Dubyak, G., Role of calcium in glucocorticosteroid-induced apoptosis of thymocytes and lymphoma cells: resurrection of old theories by new findings. Blood, 91, 731-734 (1998)
  16. Duchen, M. R., Roles of mitochondria in health and disease. Diabetes, 53, S96-102 (2004) https://doi.org/10.2337/diabetes.53.2007.S96
  17. Edwards, G., and Weston, A. H., The role of potassium channels in excitable cells. Diabetes Res. Clin. Pract., 8 Suppl, S57-66 (1995)
  18. Fasolato, C., Hoth, M., Matthews, G., and Penner, R., $Ca^{2+}$ and $Mn^{2+}$ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc. Natl. Acad. Sci. USA, 90, 3068-3072 (1993) https://doi.org/10.1073/pnas.90.7.3068
  19. Fesus, L., Thomazy, V., and Falus, A., Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett., 224, 104-108 (1987) https://doi.org/10.1016/0014-5793(87)80430-1
  20. Gogelein, H., Dahlem, D., Englert, H. C., and Lang, H. J., Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett., 268, 79-82 (1990) https://doi.org/10.1016/0014-5793(90)80977-Q
  21. Grynkiewicz, G., Poene, M., and Tsien, R. Y., A new generation of $Ca^{2+}$ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440-3450(1985)
  22. Harman, A. W., and Maxwell, M. J., An evaluation of the role of calcium in cell injury. Annu. Rev. Pharmacol. Toxicol., 35, 129-144 (1995) https://doi.org/10.1146/annurev.pa.35.040195.001021
  23. Hille, B., Ionic Channels of Excitable Membranes, 2nd Ed., Sinauer Associates, Inc., Sunderland, MA, pp. 115-139 and 472-503 (1992)
  24. Hughes, F. M., Jr, Bortner, C. D., Purdy, G. D., and Cidlowski, J. A., Intracellular$K^{+}$suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem., 272,30567-30576 (1997) https://doi.org/10.1074/jbc.272.48.30567
  25. Jordan, J., Galindo, M. F., and Miller, R. J., Role of calpain and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture. J. Neurochem., 68, 1612-1621 (1997) https://doi.org/10.1046/j.1471-4159.1997.68041612.x
  26. Kamesaki, H., Mechanisms involved in chemotherapy-induced apoptosis and theirimplications in cancer chemotherapy. Int. J. Hematol., 68, 29-43 (1998) https://doi.org/10.1016/S0925-5710(98)00038-3
  27. Kamleiter, M., Hanemann, C. O., Kluwe, L., Rosenbaum, C., Wosch, S., Mautner, V. F., Muller, H. W., and Grafe, P., Voltage-dependent membrane currents of cultured human neurofibromatosis type 2 Schwann cells. Glia, 24, 313-322 (1998) https://doi.org/10.1002/(SICI)1098-1136(199811)24:3<313::AID-GLIA5>3.0.CO;2-2
  28. Kastan, M. B., Canman, C. E., and Leonard, C. J., P53, cell cycle control and apoptosis:implications for cancer. Cancer Metastasis Rev., 14, 3-15 (1995) https://doi.org/10.1007/BF00690207
  29. Kidd, V. J., Proteolytic activities that mediate apoptosis. Annu. Rev. Physiol., 60,533-573 (1998) https://doi.org/10.1146/annurev.physiol.60.1.533
  30. Kim, J. A., Kang, Y. S., Lee, S. H., Lee, E. H., and Lee, Y. S., Involvement of $Ca^{2+}$ influx in the mechanism of tamoxifeninduced apoptosis in HepG2 human hepatoblastoma cells. Cancer Lett., 147, 115-123 (1999) https://doi.org/10.1016/S0304-3835(99)00284-0
  31. Kim, J. A., Kang, Y. S., Lee, S. H., and Lee, Y. S., Inhibitors of $Na^{+}$/$Ca^{2+}$ exchanger prevent oxidant-induced intracellular $Ca^{2+}$ increase andapoptosis in a human hepatoma cell line. Free Radic. Res., 33, 267-277 (2000) https://doi.org/10.1080/10715760000301431
  32. Kornblau, S. M., The role of apoptosis in the pathogenesis, prognosis, and therapy of hematologic malignancies. Leukemia, 12 Suppl 1, S41-46 (1998)
  33. Lepple-Wienhues, A., Berweck, S., Bohmig, M., Leo, C. P., Meyling, B., Garbe, C., and Wiederholt, M., $K^{+}$ channels and the intracellular calcium signal in human melanoma cell proliferation. J. Membr. BioI., 151,149-157 (1996) https://doi.org/10.1007/s002329900066
  34. Liu, S. I., Chi, C. W., Lui, W. Y., Mok, K. T., Wu, C. W., and Wu, S. N., Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells. Biochim. Biophys. Acta, 1368, 256-266(1998) https://doi.org/10.1016/S0005-2736(97)00183-1
  35. Malhi, H., Irani, A. N., Rajvanshi, P., Suadicani, S. O., Spray, D. C., McDonald, T. V., andGupta, S., KATP channels regulate mitogenically-induced proliferationin primary hepatocytes and human liver cell lines: implications for liver growth control and potential therapeutic targeting. J. Biol. Chem., 275, 26050-26057 (2000) https://doi.org/10.1074/jbc.M001576200
  36. McConkey, D. J. and Orrenius, S., The role of calcium in the regulation ofapoptosis. J. Leukoc. Biol., 59, 775-783 (1996)
  37. Melino, G., Annicchiarico-Petruzzeli, M., Piredda, L., Candi, E., Gentile, V., Davies, P. J., and Piacentini, M., Tissue transglutaminase and apoptosis: Sense and antisense transfection studies with human neuroblastoma cells. Mol. Cell Biol., 14, 6584-6596 (1994)
  38. Minta, A. and Tsien, R. Y., Fluorescent indicators for cytosolic sodium. J. Biol. Chem., 264, 19449-19457 (1989)
  39. Nilius, B. and Wohlrab, W., Potassium channels and regulation of proliferation of human melanoma cells. J. Physiol (Lond)., 445, 537-548 (1992)
  40. Rouzaire-Dubois, B. and Dubois, J. M., $K^{+}$ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J. Physiol (Lond)., 510, 93-102 (1998) https://doi.org/10.1111/j.1469-7793.1998.093bz.x
  41. Rouzaire-Dubois, B. and Dubois, J. M., A quantitative analysis of the role of $K^{+}$channels in mitogenesis of neuroblastoma cells. Cell Signal., 3, 333-339 (1991) https://doi.org/10.1016/0898-6568(91)90062-Y
  42. Schulte-Hermann, R., Bursch, W., Low-Baselli, A., Wagner, A., and Grasl-Kraupp, B., Apoptosis in the liver and its role in hepatocarcinogenesis. Cell Biol. Toxicol., 13, 339-348 (1997) https://doi.org/10.1023/A:1007495626864
  43. Shibasaki, F., Kondo, E., Akagi, E., and McKeon, F., Suppresion of signaling through NF-AT by interactions between calcineurin and BCL-2. Nature, 386, 728-731 (1997) https://doi.org/10.1038/386728a0
  44. Shirihai, O., Attali, B., Dagan, D., and Merchav, S., Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells. J. Cell Physiol., 177, 197-205 (1998) https://doi.org/10.1002/(SICI)1097-4652(199811)177:2<197::AID-JCP1>3.0.CO;2-I
  45. Squier, M. K. T. and Cohen, J. J., Calpain, an upstream regulator of thymocyte apoptosis. J. Immunol., 158, 3690-3697 (1997)
  46. Squier, M. K. T., Miller, A. C. K., Malkinson, A. M., and Cohen, J. J., Calpain activation in apoptosis. J. Cell Physiol., 159,229-237 (1994) https://doi.org/10.1002/jcp.1041590206
  47. Stanley, R. G., Advances in second messenger and phosphoprotein research. Academic Press, Orlando, FL 33, 107-127 (1999)
  48. Teshima, Y., Akao, M., Li, R. A., Chong, T. H., Baumgartner, W. A., Johnston, M. V., and Marban, E., Mitochondrial ATP-sensitive potassium channel activation protectscerebellar granule neurons from apoptosis induced by oxidative stress. Stroke, 34, 1796-1802 (2003) https://doi.org/10.1161/01.STR.0000077017.60947.AE
  49. Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 184, 39-51 (1995) https://doi.org/10.1016/0022-1759(95)00072-I
  50. Wang, S., Melkoumian, Z., Woodfork, K. A., Cather, C., Davidson, A. G., Wonderlin, W.F., and Strobl, J. S., Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J. Cell Physiol., 176, 456-464 (1998) https://doi.org/10.1002/(SICI)1097-4652(199809)176:3<456::AID-JCP2>3.0.CO;2-N
  51. Wondergem, R., Cregan, M., Strickler, L., Miller, R., and Suttles, J., Membrane potassium channels and human bladder tumor cells: II. Growth properties. J. Membr. Biol., 161, 257-262 (1998) https://doi.org/10.1007/s002329900332
  52. Woodfork, K. A., Wonderlin, W. F., Peterson, V. A., and Strobl, J., Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J. Cell Physiol., 162, 163-171 (1995) https://doi.org/10.1002/jcp.1041620202
  53. Wyllie, A. H., Morris, R. G., Smith, A. L., and Dunlop, D., Chromatin cleavage inapoptosis: Association with condensed chromatin morphology and dependence ormacromolecular synthesis. J. Pathol., 142, 67-67 (1984) https://doi.org/10.1002/path.1711420112
  54. Xu, B., Wilson, B. A., and Lu, L., Induction of human myeloblastic ML-1 cell $G_{1}$ arrest by suppression of $K^{+}$ channel activity. Am. J. Physiol., 271, C2037-2044 (1996)
  55. Yu, S. P, Farhangrazi, Z. S., Ying, H. S., Yeh, C. H., and Choi D. W., Enhancement of outward potassium current may participate in ${\beta}$-amyloid peptide-induced cortical neuronal death. Neurobiol. Dis., 5, 81-88 (1998) https://doi.org/10.1006/nbdi.1998.0186
  56. Zhang, H., Inazu, M., Weir, B., Buchanan, M., and Daniel, E., Cyclopiazonic acid stimulates $Ca^{2+}$ influx through non-specific cation channels in endothelial cells. Eur. J. Pharmacol., 251, 119-125 (1994) https://doi.org/10.1016/0014-2999(94)90391-3