• Title/Summary/Keyword: human gait

Search Result 234, Processing Time 0.019 seconds

The Prediction System of Emotional Reaction to Gaits Using MAX SCRIPT (맥스 스크립트를 이용한 감성적 걸음걸이 예측 시스템)

  • Jeong, Jae-Wook
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • A perceptual reaction to human being's gaits has "regularity" that possibly obtains sympathy among people. This thesis is in the vein of the study that performs the research on the quantificational extraction of the regularity, reconstitute the result, and apply it to controlling behavior. The purpose of this thesis lies in assuring the validity of the future research by demonstrating the following hypothesis: when the physical numerical values of the gait "A" whose perceptual reaction is "a" and those of the gait "B" whose perceptual reaction is "b" are arbitrarily blended, the perceptual reaction to this blended gait also corresponds to the blend of "a" and "b", "a/b". I blended the samples of two types of gaits in the form of Bipeds using the EAM made by 3D Studio Max Script. Blending outcomes were obtained successfully for four times out of the six tries in total. It implies that without utilizing other methods such as Motion Capturing, the basic Bipeds data itself has an enough capability to generate various gaits of Bipeds. Although the present research targets only the Bipeds samples equipped with the 1Cycle moving condition of arms and legs, I acknowledge that a tool that makes blending possible under various moving conditions is necessary for a completed system.

  • PDF

Evaluation of Human Body Effects during Activities of Daily Living According to Body Weight Support Rate with Active Harness System (동적 하네스 체중지지율에 따른 일상생활 동작 시 인체영향평가)

  • Song, Seong Mi;Yu, Chang Ho;Kim, Kyung;Kim, Jae Jun;Song, Won Kyung;Hong, Chul Un;Kwon, Tae Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • In this paper, we measured human body signals in order to verify a active harness system that we developed for gait and balance training. The experimental procedure was validated by tests with 20 healthy male subjects. They conducted motions of Activities of Daily Living(ADL)(Normal Walking, Stand-to-Sit, Sit-to-Stand, Stair Walking Up, and Stair Walking Down) according to body weight support rates (0%, 30%, 50% of subjects' body weight). The effectiveness of the active harness system is verified by using the results of foot pressure distribution. In normal walking, the decrease of fore-foot pressure, lateral soleus muscle and biceps femoris muscle were remarkable. The result of stand-to-sit results motion indicated that the rear-foot pressure and tibialis anterior muscle activities exceptionally decreased according to body weight support. The stair walking down show the marked drop of fore-foot pressure and rectus femoris muscle activities. The sit-to-stand and stair walking up activities were inadequate about the effect of body weight support because the velocity of body weight support system was slower than male's activity.

A Study on the Interior Design of a Dog-Friendly Hotel Using Deepfake DID for Alleviation of Pet loss Syndrome

  • Hwang, Sungi;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.248-252
    • /
    • 2022
  • The environment refers to what is surrounded by something during human life. This environment is related to the way humans live, and presents various problems on how to perceive the surrounding environment and how the behaviors that constitute the environment support the elements necessary for human life. Humans have an interest in the supportability of the environment as the interrelationship increases as humans perceive and understand the environment and accept the factors supported by the environment. In space, human movement starts from one space to the next and exchanges stimuli and reactions with the environment until reaching a target point. These human movements start with subjective judgment and during gait movement, the spatial environment surrounding humans becomes a collection of information necessary for humans and gives stimulation. will do. In this process, in particular, humans move along the movement path through movement in space and go through displacement perception and psychological changes, and recognize a series of spatial continuity. An image of thinking is formed[1]. In this process, spatial experience is perceived through the process of filtering by the senses in the real space, and the result of cognition is added through the process of subjective change accompanied by memory and knowledge, resulting in human movement. As such, the spatial search behavior begins with a series of perceptual and cognitive behaviors that arise in the process of human beings trying to read meaning from objects in the environment. Here, cognition includes the psychological process of sorting out and judging what the information is in the process of reading the meaning of the external environment, conditions, and material composition, and perception is the process of accepting information as the first step. It can be said to be the cognitive ability to read the meaning of the environment given to humans. Therefore, if we can grasp the perception of space while moving and human behavior as a response to perception, it will be possible to predict how to grasp it from a human point of view in a space that does not exist. Modern people have the theme of reminiscing dog-friendly hotels for the healing of petloss syndrome, and this thesis attempts to approach the life of companions.

A Navigation Algorithm using a Locomotion Interface with Programmable Foot Platforms for Realistic Virtual Walking (실감의 가상 걸음을 위한 발판타입 이동인터페이스의 네비게이션 알고리즘)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.6
    • /
    • pp.358-366
    • /
    • 2006
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF programmable foot platforms. When a human walks on the locomotion interface (LI), the walking motions of the human are recognized by several sensors. Then, the sensed information is used by the LI for generation of infinite surfaces for continuous walking and the virtual environments for scene update according to motions of the human walking. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation. A novel navigation algorithm is suggested to allow natural navigation in virtual environments by utilizing conditions of normal gait analysis. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. From experiments, the subjects were satisfied with the reality of the suggested navigation algorithm using the locomotion interface. Therefore, the suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

Study on Advanced Knee Joint Linkage of Active Prosthesis Leg (진보된 능동 의족 무릎 관절 구조 연구)

  • Bak, J.H.;Lee, K.H.;Lee, C.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • In this study, an advanced knee joint for active prosthesis leg driven by a linear actuator is suggested. The structure of knee joints of existing active prosthesis legs consists of three links. This kind of linkage requires large torque to drive the active prosthesis legs. Thus a new linkage structure is suggested to solve such problem in this paper. Motion characteristics of the suggested linkage are examined in the simulation. The motion simulation results show that the proposed linkage is able to imitate human gait cycles with the half of linear actuator speed in existing linkages.

  • PDF

Development of the Pneumatic Manipulator of Gait Rehabilitation Robot using Fuzzy Control (퍼지제어기를 이용한 보행재활로봇의 공압식 조작기 개발)

  • Kim, Seung-Ho;Jeong, Seung-Ho;Ryu, Du-Hyeon;Jo, Gang-Hui;Kim, Bong-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.169-175
    • /
    • 2000
  • Stable and comfortable walking supports, which can reduce the body weight load partially, are needed for the recovering patients from neurologic disease and orthopedic procedures. In this paper, the development of a manipulator of rehabilitation robot for the patients with walking disabilities are studied. A force controller using pneumatic actuators is designed and implemented to the human friendly rehabilitation robot considering the safety of patients, reliability of the system, effectiveness of the unloading control and economic maintenance of the system. The mechanism of the unloading manipulator is devised to improve the sensibility for the movement of the patients such as direction and velocity. For the unloading force control, fuzzy control algorithm is adopted to reduce the partial body weight and suppress the unwanted fluctuation of the body weight load to the weak legs due to the unnatural working of the patients with walking disabilities. The effectiveness of the force control is experimentally demonstrated.

  • PDF

The Development of a Miniature Humanoid Robot System (소형 휴머노이드 로봇 시스템 개발)

  • Sung, Young-Whee;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.420-426
    • /
    • 2001
  • In this paper, we introduce a case study of developing a miniature humanoid robot that has 16 degrees of freedom and is able to perform statically stable walking. The developed humanoid robot is 37cm tall and weighs 1,200g. RC servo motors are used as actuators. The robot can walk forward and turn to any direction on an even surface. It equipped with a small digital camera, so it can transmit vision data to a remote host computer via wireless modem. The robot can be operated in two modes: One is a remote-controlled mode, in which the robot behaves according to the command given by a human operator through the user-interface program running on a remote host computer, the other is a stand-alone mode, in which the robot behaves autonomously according the pre-programmed strategy. The user-interface program also contains a robot graphic simulator that is used to produce and verify the robot\`s gait motion. In our walking algorithm, the ankle joint is mainly used for balancing the robot. The experimental results shows that the developed robot can perform statically stable walking on an even surface.

  • PDF

Design of Robotic Prosthetic Leg for Above-knee Amputees (대퇴 절단자들을 위한 로봇 의지의 설계)

  • Yang, Un-Je;Kim, Jung-Yup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.913-922
    • /
    • 2014
  • This paper describes design of a robotic above-knee prosthetic leg which is powered by electrical motors. As a special feature, the robotic prosthetic leg has enough D.O.F.s. For mimicking the human leg, the robotic prosthetic leg is composed of five joints. Three of them are called 'active joint' which is driven by electrical motors. They are placed at the knee-pitch-axis, the ankle-pitch-axis, and the an! kle-roll-axis. Every 'active joint' has enough torque capacity to overcome ground reaction forces for walking and is backlashless for accurate motion generation and high-performance balance control. Other two joints are called 'passive joint' which is activating by torsion spring. They are placed at the toe part and designed by Crank-rocker mechanism using kinematic design approach. In order to verify working performance of the robotic prosthetic leg, we designed a gait trajectory through motion capture technique and experimentally applied it to the robot.

Foot Strike Simulation by a Slider Type Mechanical Model (미끄럼형 기계적 모델에 의한 디딤동작의 시뮬레이션)

  • Park, Hae-Soo;Shon, Woong-Hee;Yoon, Yong-San
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.269-278
    • /
    • 1989
  • The initial impact at foot strike is produced by a slider type mechanical model, which can be measured using a force platform to evaluate various shoes. The lower extremity and foot motion was filmed by a 16mm high speed movie camera and several points on the rear half of the shoe and those near the trochanter and the lateral epicondyle were digitized to provide the linear and angular positions and velocities during impact. With these observed kinematics, a slider type foot strike simulator composed of guide rail and sliding dummy is designed. The simulator system makes the artificial foot of the dummy with running shoe on it to follow the foot strike motion. The dummy has the relevant mass-spring-damper system modeled after McMahon's. The motion of the model is drived by the gravity force and the generated motion alone with the ground reaction forces are monitored by the same procedures afore mentioned producing the initial foot strike impact similar to the onto observed in human gait.

  • PDF

Force Control of an Arm of Walking Training Robot Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 보행 훈련 로봇 팔의 힘제어)

  • 신호철;강창회;정승호;김승호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.38-44
    • /
    • 2002
  • A walking training robot is proposed to provide stable and comfortable walking supports by reducing body weight load partially and a force control of an arm of walking training robot using sliding mode controller is also proposed. The current gait training apparatus in hospital are ineffective for the difficulty in keeping constant unloading level and for the constraint of patients' free walking. The proposed walking training robot effectively unloads body weight during walking. The walking training robot consists of an unloading manipulator and a mobile platform. The manipulator driven by an electro-mechanical linear mechanism unloads body weight in various levels. The mobile platform is wheel type, which allows patients to walt freely. The developed unloading system has advantages such as low noise level, lightweight, low manufacturing cost and low power consumption. A system model fur the manipulator is established using Lagrange's equation. To unload the weight of the patients, sliding mode control with p-control is adopted. Both control responses with a weight and human walking control responses are analyzed through experimental implementation to demonstrate performance characteristics of the proposed force controller.