• 제목/요약/키워드: human embryonic stem cell research

검색결과 107건 처리시간 0.028초

배아연구와 불법행위책임 (Human Embryo Research and Tort Liability)

  • 서종희
    • 의료법학
    • /
    • 제12권1호
    • /
    • pp.227-255
    • /
    • 2011
  • Recently, many nations said "yes" to human embryonic stem cell research, signing an executive order to permit funding for the research in the mame of achieving health and life of humankind. Human Embryo Research is permitted by our Bioethics & Biosafety Act. But, illegal research cannot be divorced from civil liability since it requires the destruction of eggs of fertilized eggs and personal rights of embryo-creator. After all, though we allow to do research embryo, we should control the capacity of abuse of embryo research for embryo-creator. If research violate the law(Bioethics & Biosafety Act or Civil Law, etc), it comes to a delict by pecuniary loss and non-pecuniary loss. When it comes to pecuniary loss, Human Embryo is not body but special property. Supreme Court maintained a stance that mental suffering is generally deemed as compensable for damages for the loss of property where a person's property right is invaded by a tort or non-performance of obligation. Thus, where mental suffering occurs, which cannot be compensated by recovery of property losses, the situation must be a special circumstance and the injured could claim consolation money for such losses only if the offender knew or would have known of such special circumstances(Supreme Court Decision 96Da31574 delivered on Nov, 26, 1996, etc.). That is to say, Supreme Court regards mental suffering through person's property right invaded by a tort as damages that have arisen through special circumstances. According to Civil law article 393 (2), the injured could claim consolation money for such losses only if only if the offender had foreseen or could have foreseen such circumstances. Also our court will solve through damages for non-pecuniary loss by complementary function of consolation money in that pecuniary loss could be difficult to valuate.

  • PDF

Differentiation of Human ES Cells to Endodermal Lineage Cells

  • Sung, Ji-Hye;Lim, Chun-Kyu;Cho, Jae-Won;Park, Hye-Won;Koong, Mi-Kyoung;Yoon, Hyun-Soo;Jun, Jin-Hyun
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.60-60
    • /
    • 2003
  • Embryonic stem (ES) cells have property of self-renewal and can differentiate into the cells of all three primary germ layers. Recently, many growth factors, alteration of culture condition and gene modifications have been used to differentiate mouse and human ES cells into specific cell types. This study was performed to evaluate the differentiation protocol for human ES cells to the endodermal lineage cells. Human ES cells (Miz-hESl ) were cultured on STO feeder layer mitotically inactivated with mitemycin C, and embryoid bodies (EBs) were formed by suspension culture. Differentiation protocol of EBs consisted of three steps: stage I, culture of EBs for 6 days with ITSFn medium; stage II, culture of stage I cells for 8 days with N2 medium ; stage III, culture of stage II cells for 22 days with N2 medium. mRNA levels of the endodermal lineage differentiation genes were analyzed by semi- quantitative RT-PCR. The Oct-4 expression, a marker of the pluripotent state, was detected in undifferentiated human ES cells but progressively decreased after EBs formation. Differentiating human ES cells expressed marker genes of endodermal differentiation and pancreatic islet cells. GATA4, a-fetoprotein, Glut-2, and Ngn3 were expressed in all stages. However, albumin and insulin were expressed in only stage III cells. The human ES cells can be differentiated into endodermal lineage cells by multiple step culture system using various supplements. We are developing the more effective protocols for guided differentiation of human ES cells.

  • PDF

생쥐 생식줄기세포의 체외 분리 및 증식 (In Vitro Isolation and Proliferation of Mouse Male Germ-Line Stem Cells)

  • 김수경;김계성
    • 한국수정란이식학회지
    • /
    • 제18권3호
    • /
    • pp.243-248
    • /
    • 2003
  • 1. 생쥐 고환으로부터 얻은 세포를 배양하여 군집을 형성하는 것을 관찰할 수 있었으며, AP, SSEA-1, -3, -4과 Integrin $\alpha$6, $\beta$1 및 Oct4의 발현을 확인하였다. 2. 생쥐 생식줄기세포를 3-5일정도 배양하게 되면, 여러 층으로 이루어진 군집을 이루게 되는데 이는 생쥐 배아줄기세포나 배아생식줄기세포의 형태와 같은 것이었다. 3. 생쥐 생식줄기세포를 체외에서 효과적으로 분리, 배양할 수 있는 조건을 확립하였다.

Up-Regulation of $p27^{Kip1}$ Protects hES Cells from Differentiation-Associated and Caspase 3-Dependent Apoptosis

  • Park, So-Hyun;Kim, Min Kyoung;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1790-1794
    • /
    • 2012
  • Recently, it has been suggested that $p27^{Kip1}$, the cell cycle regulatory protein, plays a pivotal role in the progression of normal differentiation in murine embryonic stem (mES) cells. In the current study, we investigated the role of $p27^{Kip1}$ in the regulation of differentiation and apoptotic induction using Western blotting, quantitative real-time RT-PCR, and small interfering RNA (siRNA) assays and confocal laser scanning microscopic analysis of H9 human ES (hES) cells and H9-derived embryoid bodies (EBs) grown for 10 ($EB_{10}$) and 20 days ($EB_{20}$). Our results demonstrate that the proteins $p27^{Kip1}$ and cyclin D3 are strongly associated with cellular differentiation, and, for the first time, show that up-regulation of $p27^{Kip1}$ protects hES cells from inducing differentiation-associated and caspase 3-dependent apoptosis.

배아줄기세포에서 트랜스 스플라이싱 전사체의 분석 (Analysis of Trans-splicing Transcripts in Embryonic Stem Cell)

  • 하홍석;허재원;김대수;박상제;배진한;안궁;윤세은;김희수
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.549-552
    • /
    • 2009
  • 유전자의 융합으로 인한 돌연변이는 염색체 재배열, 트랜스 스플라이싱, 유전자간 스플라이싱으로 인하여 야기된다고 알려져 있다. 우리는 두 개의 서로 다른 유전자의 pre-mRNA의 융합으로 인하여 만들어지는 트랜스 스플라이싱의 전사 산물에 관심을 가져, 인간의 태아 줄기 세포에서 이러한 돌연변이 양상을 분석하였다. 배아줄기세포의 mRNA에서 트랜스 스플라이싱 전사체 70개를 탐지해 내고, 이들의 융합되는 패턴에 따라 5'UTR-5'UTR, 5'UTR-3'UTR, 3'UTR-3'UTR, 5'UTR- CDS, 3'UTR-CDS, CDS-CDS의 6개의 유형으로 분류하여 분석하였다. 두 유전자의 융합되는 영역은 UTR영역보다 CDS에서 풍부하였는데, 이러한 이유는 많은 인트론 수로 인해 야기되는 것으로 추정된다. 융합되는 유전자의 염색체상의 위치분석 결과, 17번과 19번 염색체가 융합유전자의 활성화를 나타내었다. 이러한 연구결과는 향후 융합유전자와 인간의 질병 연구에 크게 기여할 것으로 사료된다.

Disruption of the Tff1 gene in mice using CRISPR/Cas9 promotes body weight reduction and gastric tumorigenesis

  • Kim, Hyejeong;Jeong, Haengdueng;Cho, Yejin;Lee, Jaehoon;Nam, Ki Taek;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.257-263
    • /
    • 2018
  • Trefoil factor 1 (TFF1, also known as pS2) is strongly expressed in the gastrointestinal mucosa and plays a critical role in the differentiation of gastric glands. Since approximately 50% of all human gastric cancers are associated with decreased TFF1 expression, it is considered a tumor suppressor gene. Tff1 deficiency in mice results in histological changes in the antral and pyloric gastric mucosa, with severe hyperplasia and dysplasia of epithelial cells, resulting in the development of antropyloric adenoma. Here, we generated Tff1-knockout (KO) mice, without a neomycin resistant ($Neo^R$) cassette, using the clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRSIPR/Cas9) system. Though our Tff1-KO mice showed phenotypes very similar to the previous embryonic stem (ES)-cell-based KO mice, they differed from the previous reports in that a reduction in body weight was observed in males. These results demonstrate that these newly established Tff1-KO mice are useful tools for investigating genetic and environmental factors influencing gastric cancer, without the effects of artificial gene insertion. Furthermore, these findings suggest a novel hypothesis that Tff1 expression influences gender differences.