• Title/Summary/Keyword: human cervical cancer cell (HeLa)

Search Result 81, Processing Time 0.026 seconds

Inotodiol Inhabits Proliferation and Induces Apoptosis through Modulating Expression of cyclinE, p27, bcl-2, and bax in Human Cervical Cancer HeLa Cells

  • Zhao, Li-Wei;Zhong, Xiu-Hong;Yang, Shu-Yan;Zhang, Yi-Zhong;Yang, Ning-Jiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3195-3199
    • /
    • 2014
  • Inonotus obliquus is a medicinal mushroom that has been used as an effective agent to treat various diseases such as diabetes, tuberculosis and cancer. Inotodiol, an included triterpenoid shows significant anti-tumor effect. However, the mechanisms have not been well documented. In this study, we aimed to explore the effect of inotodiol on proliferation and apoptosis in human cervical cancer HeLa cells and investigated the underlying molecular mechanisms. HeLa cells were treated with different concentrations of inotodiol. The MTT assay was used to evaluate cell proliferating ability, flow cytometry (FCM) was employed for cell cycle analysis and cell apoptosis, while expression of cyclinE, p27, bcl-2 and bax was detected by immunocytochemistry. Proliferation of HeLa cells was inhibited by inotodiolin a dose-dependent manner at 24h (r=0.9999, p<0.01). A sub-$G_1$ peak (apoptotic cells) of HeLa cells was detected after treatment and the apoptosis rate with the concentration and longer incubation time (r=1.0, p<0.01), while the percentage of cells in S phase and $G_2$/M phase decreased significantly. Immunocytochemistry assay showed that the expression of cyclin E and bcl-2 in the treated cells significantly decreased, while the expression of p27 and bax obviously increased, compared with the control group (p<0.05). The results of our research indicate that inotodiol isolated from Inonotus obliquus inhibited the proliferation of HeLa cells and induced apoptosis in vitro. The mechanisms may be related to promoting apoptosis through increasing the expression of bax and cutting bcl-2 and affecting the cell cycle by down-regulation the expression of cyclin E and up-regulation of p27. The results further indicate the potential value of inotodiol for treatment of human cervical cancer.

Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells

  • Lee, Kyung-Hong;Lee, Min-Ho;Kang, Yeo-Wool;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.526-531
    • /
    • 2012
  • Many malignant tumors become resistant to tumor necrosis factor-alpha (TNF-${\alpha}$)-induced cell death during carcinogenesis. In the present study, we examined whether parkin acts as a tumor suppressor in HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. TNF-${\alpha}$-treatment alone did not affect HeLa cell viability. However, expression of parkin restored TNF-${\alpha}$-induced apoptosis in HeLa cells. Increased cell death was due to the activation of the apoptotic pathway. Expression of parkin in TNF-${\alpha}$-treated HeLa cells stimulated cleavage of the pro-apoptotic proteins caspase-8, -9, -3, -7 and poly ADP ribose polymerase (PARP). In addition, parkin expression resulted in decreased expression of the caspase inhibitory protein, survivin. These results suggest that parkin acts as a tumor suppressor in human cervical cancer cells by modulating survivin expression and caspase activity. We propose that this pathway is a novel molecular mechanism by which parkin functions as a tumor suppressor.

PD98059 Induces the Apoptosis of Human Cervical Cancer Cells by Regulating the Expression of Bcl2 and ERK2

  • Yang, Eun-Ju;Chang, Jeong-Hyun
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.291-295
    • /
    • 2011
  • PD98059 is the specific inhibitor of extracellular signaling-regulated kinase (ERK) kinase (MEK). ERK is involved in a mitogen-activated protein kinase (MAPK) cascade controlling cell growth and differentiation. Although the inhibition of ERK is known to induce cell death in various cell lines, this effect is still controversial and the role of PD98059 on the death of HeLa $S_3$ cells, a subclone of the cervical cancer cell line, is not well understood. The apoptosis of HeLa $S_3$ cells increased after the treatment of 50 ${\mu}M$ PD98059. The induction of apoptosis by PD98059 was occurred in a time- and a dose-dependent manners. The expression of Bcl-2 was reduced in accordance with decrease of ERK2 expression. Taken together, these results indicate that PD98059 has a cytotoxicity in HeLa $S_3$ cells and it may be used as a potential target for the treatment of cervical cancer.

(-)-Epigallocatechin-3-Gallate Induces Apoptosis and Inhibits Invasion and Migration of Human Cervical Cancer Cells

  • Sharma, Chhavi;Nusri, Qurrat El-Ain;Begum, Salema;Javed, Elham;Rizvi, Tahir A.;Hussain, Arif
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4815-4822
    • /
    • 2012
  • Invasion and metastasis are the major causes of cancer-related death. Pharmacological or therapeutic interventions such as chemoprevention of the progression stages of neoplastic development could result in substantial reduction in the incidence of cancer mortality. (-)-Epigallocatechin-3-gallate (EGCG), a promising chemopreventive agent, has attracted extensive interest for cancer therapy utilizing its antioxidant, anti-proliferative and inhibitory effects on angiogenesis and tumor cell invasion. In this study, we assessed the influence of EGCG on the proliferative potential of HeLa cells by cell viability assay and authenticated the results by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Further we analyzed the anti-invasive properties of EGCG by wound migration assay and gene expression of MMP-9 and TIMP-1 in HeLa cells. Our results indicated that EGCG induced growth inhibition of HeLa cells in a dose- and time-dependent manner. It was observed that cell death mediated by EGCG was through apoptosis. Interestingly, EGCG effectively inhibited invasion and migration of HeLa cells and modulated the expression of related genes (MMP-9 and TIMP-1). These results indicate that EGCG may effectively suppress promotion and progression stages of cervical cancer development.

Anticancer Activity of Chloroform Fraction of Methanol Extract of Sparassis crispa in Human Cervical Cancer Stem Cells (자궁경부암 줄기세포에 대한 꽃송이버섯 메탄올 추출물의 클로로포름 분획의 항암 활성)

  • Han, Jang Mi;Kim, Sung Min;Kim, Hye Young;Baek, Seung Bae;Jung, Hye Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • Sparassis crispa is an edible mushroom that has been widely utilized in Japan and Korea. It has various biological activities, such as anti-hypertensive, anti-allergic, anti-diabetic, anti-inflammatory, anti-angiogenic, and anti-cancer effects. In this study, we investigated the anticancer activity and underlying molecular mechanism of chloroform fraction of methanol extract of S. crispa (CESP) against cervical cancer stem cells (CSCs), which contribute to tumor initiation, recurrence, and resistance to therapy of human cervical cancer. CESP effectively inhibited the proliferation, tumorsphere formation, and migration of HeLa-derived cervical CSCs by promoting apoptosis. In addition, CESP significantly downregulated the expression of key cancer stemness markers, including integrin α6, CD133, CD44, ALDH1A1, Nanog, Oct-4, and Sox-2, in HeLa-derived cervical CSCs. Furthermore, CESP remarkably suppressed in vivo tumor growth of HeLa-derived cervical CSCs in a chick embryo chorioallantoic membrane (CAM) model. Therefore, our findings suggest that CESP has potential as a natural medicine for the prevention and treatment of cervical cancer by targeting CSCs.

Inhibitory Effects of S-allylcysteine on Cell Proliferation of Human Cervical Cancer Cell Line, HeLa (S-allylcysteine의 자궁경부암세포주 HeLa에 대한 세포증식 억제효과)

  • Kim, Hyun Hee;Min, Gyesik
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.397-405
    • /
    • 2015
  • S-allylcysteine (SAC) is a water-soluble organosulfur compound abundant in the aged garlic extract and has been drawing attention as a diet-derived alternative agent not only for the effects of anti-oxidation and anti-inflammation but also for the prevention and treatment of various types of cancer. However, there is no report about the anticancer effects of SAC on cervical cancer cells. The aim of this study was to analyze the inhibitory effects of SAC on cell proliferation of cervical cancer cell line, HeLa and to examine its effects on the apoptosis and cell cycle as the cellular mechanisms of anti-proliferation. For this, we examined effects of different concentrations of SAC on cell proliferation according to treatment periods. Treatment with SAC not only induced morphological changes but also resulted in the reduction of cell viability and the inhibition of concentration- and time-dependant cell proliferation of HeLa. Furthermore, SAC also induced fragmentation of DNA in both DNA fragmentation and TUNEL assays, and induced cell cycle arrest at the G2/M phase in cell cycle analysis. These results suggest that SAC inhibits proliferation of HeLa at least in part through the induction of apoptosis and the cell cycle arrest.

Parkin Induces MMP-3 Expression in Human Cervical Cancer Cells

  • Lee, Min Ho;Jung, Byung Chul;Jung, Bae Dong;Lee, In-Soo;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Parkin is known to be a tumor suppressor protein. Previously, we determined that parkin expression restores susceptibility to TNF-${\alpha}$-induced death of HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. MMP-3 is a zinc-dependent protease recently reported to activate intracellular apoptotic signaling. In this study we examined the regulation of MMP-3 expression by parkin in TNF-${\alpha}$-treated HeLa cells. Furthermore, we investigated the signaling pathway involved in parkin-induced expression of MMP-3. We found that HeLa cells exhibit low levels of MMP-3 but is induced after introduction of the parkin gene into HeLa cells. Furthermore, MMP-3 expression increased further when parkin expressing cells were treated with TNF-${\alpha}$. Using chemical inhibitors of cell signaling pathways, we found that MEK-1 (PD98059), PI3K (LY294002), p38 MAPK (SB203580), and JNK inhibitors alleviated parkin-induced up-regulation of MMP-3. Finally, we show that TNF-${\alpha}$-induced cell death in parkin expressing cells is inhibited by using a MMP-3 inhibitor. These results suggest that parkin expression induces prolonged expression of MMP-3 via MEK-1, PI3K, MAPK, and JNK pathway in HeLa cells allowing the HeLa cells to become sensitive to TNF-${\alpha}$-induced cell death. These results implicate a role of MMP-3 in parkin-induced cell death in TNF-${\alpha}$ treated HeLa cells.

The effect of the stem of Spatholobus suberectus Dunn on the proliferation and gene expression related apoptosis in human cervical cancer cells (계혈등(鷄血藤)이 자궁경부암세포의 세포자멸사 유도와 관련 유전자 발현에 미치는 영향)

  • Kim, Byounghoe;Baek, Seunghee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.1
    • /
    • pp.169-180
    • /
    • 2005
  • Objective : Spatholobus Suberectus Dunn stems, Chinese vine plants, have been used for the relief of menstrual disorders and rheumatic arthralgia. In this study, we investigated the antitumor effect of Spatholobus Suberectus Dunn on cervical cancer in vitro. Methods : HeLA cervical cancer cell lines were used as targets. We examined the effect of water extract from Spatholobus Suberectus Dunn on cell proliferation, cell cycle regulation and cell cycle-regulating gene expression. Further, we investigated the apoptotic effects of Spatholobus Suberectus Dunn on cervical cancer cell lines. Results : Spatholobus Suberectus Dunn significantly inhibited the proliferation of cervical cancer cell lines in a dose-dependent and time dependent manner. Fluorescence activated cell sorter (FACS) analysis indicated that Spatholobus Suberectus Dunn induced G1 cell cycle arrest. Spatholobus Suberectus Dunn enhanced the expression of $p21^{waf1}$ and $p27^{kip1}$ with cell cycle arrest. Further, Spatholobus Suberectus Dunn stimulated apoptosis via caspase3 pathway. Conclusions : These findings suggest that Spatholobus Suberectus Dunn is a candidate agent for the treatment of cervical cancer. p21waf1 and $p21^{waf1}$ and $p27^{kip1}$ may play an important role in Spatholobus Suberectus Dunn-induced cell cycle arrest and cell growth inhibition.

  • PDF

Knockdown of LKB1 Sensitizes Endometrial Cancer Cells via AMPK Activation

  • Rho, Seung Bae;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.650-657
    • /
    • 2021
  • Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphate-activated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.

Dohaekseungkitang extract induced apoptosis in Human Cervical carcinoma HeLa cells (도핵승기탕(桃核承氣湯) 자궁경부암세포(子宮經部癌細胞)(HeLa cell)의 apoptosis에 미치는 영향(影響))

  • Kang, Yong-Goo;Ahn, Kyu-Hwan;Kong, Bok-Cheul;Kim, Song-Baeg;Cho, Han-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.77-91
    • /
    • 2006
  • Purpose : To address the ability of Dohaekseungkitang (DST: a commonly used herb formulation in Korea, Japan and China to have anti-cancer effect on cervical carcinoma), we investigated the effects of DST on programmed cell death (apoptosis) in HeLa human cervical carcinoma cells. Methods : We cultured HeLa cell which is human metrocarcinoma cell in D-MEM included 10% fetal bovine serum(Hyclone Laboratories) below $37^{\circ}C$, 5% CO2. Then we observed apoptosis of log phage cell which is changed cultivation liquid 24 Hours periodically. Results : After the treatment of DST for 48 hours, apoptosis occurred in a dose-dependent manner. In this study, we have shown that DST induces calpain and the associated caspase-8 and -9 activations. Apoptosis was prevented by pre-incubation of the cells with the calcium cHeLator-BAPTA-AM, calcium channel blocker-Nif edipine or Ryonidine agonist-Ryonidine peptide, implicating calcium in the apoptotic process. Ubiquitous calpains (mu- and m-calpain) have been repeatedly implicated in apoptosis, especially in calcium-related apoptosis. However this study showed 1hat either calpain inhibitor-calpastin or caspase-3 inhibitor-DEVD- did not blocked the herb formulation-induced apoptosis in HeLa human cervical carcinoma cells. D ST initiates a cell death pathway that is partially dependent of caspases. DST-induced apoptosis requires caspase-independent mechanism. Conclusion : We conclude that DST-induced calpain activation triggers the intrinsic apoptotic pathway in which caspase-independent mechanism is also involved.

  • PDF