• Title/Summary/Keyword: human and computer interaction

Search Result 607, Processing Time 0.031 seconds

Speech sound and personality impression (말소리와 성격 이미지)

  • Lee, Eunyung;Yuh, Heaok
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.59-67
    • /
    • 2017
  • Regardless of their intention, listeners tend to assess speakers' personalities based on the sounds of the speech they hear. Assessment criteria, however, have not been fully investigated to indicate whether there is any relationship between the acoustic cue of produced speech sounds and perceived personality impression. If properly investigated, the potential relationship between these two will provide crucial insights on the aspects of human communications and further on human-computer interaction. Since human communications have distinctive characteristics of simultaneity and complexity, this investigation would be the identification of minimum essential factors among the sounds of speech and perceived personality impression. The purpose of this study, therefore, is to identify significant associations between the speech sounds and perceived personality impression of speaker by the listeners. Twenty eight subjects participated in the experiment and eight acoustic parameters were extracted by using Praat from the recorded sounds of the speech. The subjects also completed the Neo-five Factor Inventory test so that their personality traits could be measured. The results of the experiment show that four major factors(duration average, pitch difference value, pitch average and intensity average) play crucial roles in defining the significant relationship.

A Study on the Factors Affecting Flow in e-Learning Environment - Focusing on Interaction Factors and Affordance - (이러닝 환경에서 몰입에 영향을 미치는 요인 연구 -상호작용 요인과 어포던스 요인을 중심으로-)

  • Lee, So-Young;Kim, Hyung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.522-534
    • /
    • 2019
  • The purpose of this study is to investigate the interaction factors(learning motivation, concrete feedback, learner's control) and affordance factors (aesthetics, playfulness, stability) that influence flow in e - learning. This study collected 236 survey data from e-learning users. The data was analyzed the statistical relationships among the variables using the SPSS21 and AMOS21. The measurement model was reliable and valid, and the structual model was good. The result shows that interaction factors (concrete feedback, learner's control) and affordance factor (playfulness) influence on flow. Flow has a significant effect on satisfaction. Especially the effect of playfulness on flow is meaningful. Playfulness is one of the most important factors leading to the flow state of humans. The contribution of this study is to find the factors influencing flow in the interaction between learners and computer in e-learning. It can be used to provide an entertainment experience that can enhance the satisfaction of consumers in the Internet environment by finding the antecedents that affect the flow in computer - human interaction.

Physiological Responses-Based Emotion Recognition Using Multi-Class SVM with RBF Kernel (RBF 커널과 다중 클래스 SVM을 이용한 생리적 반응 기반 감정 인식 기술)

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.364-371
    • /
    • 2013
  • Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.

Inter-space Interaction Issues Impacting Middleware Architecture of Ubiquitous Pervasive Computing

  • Lim, Shin-Young;Helal, Sumi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.42-51
    • /
    • 2008
  • We believe that smart spaces, offering pervasive services, will proliferate. However, at present, those islands of smart spaces should be joined seamlessly with each other. As users move about, they will have to roam from one autonomous smart space to another. When they move into the new island of smart space, they should setup their devices and service manually or not have access to the services available in their home spaces. Sometimes, there will conflicts between users when they try to occupy the same space or use a specific device at the same time. It will also be critical to elder people who suffer from Alzheimer or other cognitive impairments when they travel from their smart space to other visited spaces (e.g., grocery stores, museums). Furthermore our experience in building the Gator Tech Smart House reveals to us that home residents generally do not want to lose or be denied all the features or services they have come to expect simply because they move to a new smart space. The seamless inter-space interaction requirements and issues are raised automatically when the ubiquitous pervasive computing system tries to establish the user's service environment by allocating relevant resources after the user moves to a new location where there are no prior settings for the new environment. In this paper, we raise and present several critical inter-space interactions issues impacting middleware architecture design of ubiquitous pervasive computing. We propose requirements for resolving these issues on seamless inter-space operation. We also illustrate our approach and ideas via a service scenario moving around two smart spaces.

Design of menu structures for the human interfaces of electronic products (전자제품 휴먼 인터페이스의 메뉴 설계 방안)

  • 곽지영;한성호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.534-544
    • /
    • 1995
  • Many electronic products employ menu-driven interfaces for user-system dialogue. Unlike the software user interfaces, a small single-line display, such as a Liquid Crystal Display, is typically used to present menu items. Since the display can show only a single menu item at a time, more serious navigation problems are expected with single-line display menus(SDM). This study attempts to provide a set of unique guidelines for the design of the SDM based on empirical results. A human factors experiment was conducted to examine the effects of four design variables: menu structure, user experience, navigation aid, and number of targets. The usability of design alternatives was measured quantitatively in four different aspects, which were speed, accuracy, inefficiency of navigation, and subjective user preference. The analysis of variance was used to test the statistical effects of the design variables and their interaction effects. A set of design guidelines was drawn from the results which can be applied to the design of human-system interfaces of a wide variety of electronic consumer products using such displays. Since more generalized guidelines could be provided by constructing prediction models based on the empirical data, some powerful performance models are also required for the SDM. As a preliminary study, a survey was done on the performance models for ordinary computer menus.

  • PDF

Meta Data Model based on C-A-V Structure for Context Information in Ubiquitous Environment (유비쿼터스 환경에서 컨텍스트 정보를 위한 C-A-V구조 기반의 메타 데이터 모델)

  • Choi, Ok-Joo;Yoon, Yong-Ik
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In ubiquitous computer environment, by improving the computer's access to context information for dynamic service adaptation, we can increase richness of communication in human computer interaction and make it possible to produce more useful computational services. We need new data structure in order to flexible apply dynamic information to current context information repository and enhance the communication ability between human and computer. In this paper, we proposed to C-A-V (Category-Attribute-Value) context metadata structure required to support dynamic service adaptation for increasing communication ability in user-centric environments. We also classify the context metadata, as well as define its relationship with other context information on the basis of the application services, changes in the external environments.

A Study on the Reduction in VR Cybersickness using an Interactive Wind System (Interactive Wind System을 이용한 VR 사이버 멀미 개선 연구)

  • Lim, Dojeon;Lee, Yewon;Cho, Yesol;Ryoo, Taedong;Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.43-53
    • /
    • 2021
  • This paper presents an interactive wind system that generates artificial winds in a virtual reality (VR) environment according to online user inputs from a steering wheel and an acceleration pedal. Our system is composed of a head-mounted display (HMD) and three electric fans to make the user sense touch from the winds blowing from three different directions in a racing car VR application. To evaluate the effectiveness of the winds for reducing VR cybersickness, we employ the simulator sickness questionnaire (SSQ), which is one of the most common measures for cybersickness. We conducted experiments on 13 subjects for the racing car contents first with the winds and then without them or vice versa. Our results showed that the VR contents with the artificial winds clearly reduce cybersickness while providing a positive user experience.

Multi Function Console display configuration and HCI design to improve Naval Combat System operability

  • Park, Dae-Young;Jung, Dong-Han;Yang, Moon-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.75-84
    • /
    • 2019
  • The Naval Combat System has several equipment needed to operate the system, such as radar equipment, underwater sensor equipment, guns and missile control and armed control equipment, and a multi function console is configured to control it. The multi function console is equipped with HCI(Human Computer Interaction)-based software for displaying the status information of equipment and controlling equipment, and the operator uses the installed software to operate the Naval Combat System. However, when operating a Naval Combat System for a long time, there are problems such as physical discomfort caused by the structure of the multi function console display and increase in fatigue of the person who operates various and complicated user interface configuration. These issues are important factors in reducing Naval Combat System operability. In order to solve these issues, in this paper, based on a questionnaire survey conducted for Naval Combat System development personnel, multi function console screen design to reduce physical discomfort and HCI design to reduce fatigue and increase intuition are proposed. The proposed design is expected to provide convenience to future Naval Combat System operators and improve operation over existing Naval Combat System.

A Study on Verification of Back TranScription(BTS)-based Data Construction (Back TranScription(BTS)기반 데이터 구축 검증 연구)

  • Park, Chanjun;Seo, Jaehyung;Lee, Seolhwa;Moon, Hyeonseok;Eo, Sugyeong;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.109-117
    • /
    • 2021
  • Recently, the use of speech-based interfaces is increasing as a means for human-computer interaction (HCI). Accordingly, interest in post-processors for correcting errors in speech recognition results is also increasing. However, a lot of human-labor is required for data construction. in order to manufacture a sequence to sequence (S2S) based speech recognition post-processor. To this end, to alleviate the limitations of the existing construction methodology, a new data construction method called Back TranScription (BTS) was proposed. BTS refers to a technology that combines TTS and STT technology to create a pseudo parallel corpus. This methodology eliminates the role of a phonetic transcriptor and can automatically generate vast amounts of training data, saving the cost. This paper verified through experiments that data should be constructed in consideration of text style and domain rather than constructing data without any criteria by extending the existing BTS research.

Adaptive Mass-Spring Method for the Synchronization of Dual Deformable Model (듀얼 가변형 모델 동기화를 위한 적응성 질량-스프링 기법)

  • Cho, Jae-Hwan;Park, Jin-Ah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Traditional computer simulation uses only traditional input and output devices. With the recent emergence of haptic techniques, which can give users kinetic and tactile feedback, the field of computer simulation is diversifying. In particular, as the virtual-reality-based surgical simulation has been recognized as an effective training tool in medical education, the practical virtual simulation of surgery becomes a stimulating new research area. The surgical simulation framework should represent the realistic properties of human organ for the high immersion of a user interaction with a virtual object. The framework should make proper both haptic and visual feedback for high immersed virtual environment. However, one model may not be suitable to simulate both haptic and visual feedback because the perceptive channels of two feedbacks are different from each other and the system requirements are also different. Therefore, we separated two models to simulate haptic and visual feedback independently but at the same time. We propose an adaptive mass-spring method as a multi-modal simulation technique to synchronize those two separated models and present a framework for a dual model of simulation that can realistically simulate the behavior of the soft, pliable human body, along with haptic feedback from the user's interaction.

  • PDF