• Title/Summary/Keyword: huffman code

Search Result 38, Processing Time 0.021 seconds

Huffman Coding using Nibble Run Length Code (니블 런 랭스 코드를 이용한 허프만 코딩)

  • 백승수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • In this paper We propose the new lossless compression method which use Huffman Coding using the preprocessing to compress the still image. The proposed methode divide into two parts according to activity of the image. If activities are high, the original Huffman Coding method was used directly. IF activities are low, the nibble run-length coding and the bit dividing method was used. The experimental results show that compression rate of the proposed method was better than the general Huffman Coding method.

  • PDF

Hybrid Retrieval Machine for Recognizing 3-D Protein Molecules (3차원 단백질 분자 인식을 위한 복합 추출기)

  • Lee, Hang-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.990-995
    • /
    • 2010
  • Harris corner detector is commonly used to detect feature points for recognizing 2-D or 3-D objects. However, the feature points calculated from both of query and target objects need to be same positions to guarantee accurate recognitions. In order to check the positions of calculated feature points, we generate a Huffman tree which is based on adjacent feature values as inputs. However, the structures of two Huffman trees will be same as long as both of a query and targets have same feature values no matter how different their positions are. In this paper, we sort feature values and calculate the Euclidean distances of coordinates between two adjacent feature values. The Huffman Tree is generated with these Euclidean distances. As a result, the information of point locations can be included in the generated Huffman tree. This is the main strategy for accurate recognitions. We call this system as the HRM(Hybrid Retrieval Machine). This system works very well even when artificial random noises are added to original data. HRM can be used to recognize biological data such as proteins, and it will curtail the costs which are required to biological experiments.

An Efficient Data Compression Algorithm For Binary Image (Binary Image의 효율적인 데이타 압축 Algorithm에 관한 연구)

  • Kang, Ho-Gab;Lee, Keun-Young
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1375-1378
    • /
    • 1987
  • In this paper, an efficient data compression algorithm for binary image is proposed. This algorithm makes use of the fact that boundaries contain all the information about such images. The compression efficiency is then further increased by efficient coding of Boundary Information Matrix. The comparison of performance with modified Huffman coding was made by a computer simulation with some images. The results of simulation showed that the proposed algorithm was more efficient than modified Huffman code.

  • PDF

The efficient coding of the upper bands in subband image coding (대역분할 부호화에서 상위대역의 효율적인 부호화)

  • Han, Young-Oh;Park, Hyun-Soo;Shin, Joong-In;Kim, Hyung-Suk;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.346-349
    • /
    • 1993
  • A method for image compression based on decomposition is presented. We design the efficient coding technique for upper band image signals. This coding technique with directive 1-D DPCM is based on the statistical properties of upper bands. Lower band image signals is encoded using 2-D DPCM. The directive 1-D DPCM is performed, scanning upper bands according to edge direction. And then the predicted error signals of upper band sis coded using B1 and Huffman code, and the predicted error signals of lower band is coded using Huffman code. The proposed system shows improved performance when compared with other existing methods with respect to peak signal to noise ratio(PSMR) and human visual system(HVS) properties.

  • PDF

DNA Sequences Compression using Repeat technique and Selective Encryption using modified Huffman's Technique

  • Syed Mahamud Hossein; Debashis De; Pradeep Kumar Das Mohapatra
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.85-104
    • /
    • 2024
  • The DNA (Deoxyribonucleic Acid) database size increases tremendously transmuting from millions to billions in a year. Ergo for storing, probing the DNA database requires efficient lossless compression and encryption algorithm for secure communication. The DNA short pattern repetitions are of paramount characteristics in biological sequences. This algorithm is predicated on probing exact reiterate, substring substitute by corresponding ASCII code and engender a Library file, as a result get cumulating of the data stream. In this technique the data is secured utilizing ASCII value and engendering Library file which acts as a signature. The security of information is the most challenging question with veneration to the communication perspective. The selective encryption method is used for security purpose, this technique is applied on compressed data or in the library file or in both files. The fractional part of a message is encrypted in the selective encryption method keeping the remaining part unchanged, this is very paramount with reference to selective encryption system. The Huffman's algorithm is applied in the output of the first phase reiterate technique, including transmuting the Huffman's tree level position and node position for encryption. The mass demand is the minimum storage requirement and computation cost. Time and space complexity of Repeat algorithm are O(N2) and O(N). Time and space complexity of Huffman algorithm are O(n log n) and O(n log n). The artificial data of equipollent length is additionally tested by this algorithm. This modified Huffman technique reduces the compression rate & ratio. The experimental result shows that only 58% to 100% encryption on actual file is done when above 99% modification is in actual file can be observed and compression rate is 1.97bits/base.

A reversible variable length code with an efficient table memory (효율적인 테이블 메모리를 갖는 가역 가변길이 부호)

  • 임선웅;배황식;정정화
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.133-136
    • /
    • 2000
  • A RVLC(Reversible Variable Length Code) with an efficient table memory is proposed in this paper. In the conventional decoding methods, the weight of symbols and code values are used for the decoding table. These methods can be applied for Huffman decoding. In VLC decoding, many studies have been done for memory efficiency and decoding speed. We propose an improved table construction method for general VLC and RVLC decoding, which uses the transition number of bits within a symbol with an enhanced weight decomposition. In this method, tile table for RVLC decoding can be implemented with a smaller memory

  • PDF

Reversible Image Coding with Progressive Build-up (단계적 전송기능을 갖는 영상 데이터의 가역 부호화)

  • 박지환;김진홍;김두영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • In this paper we propose a reversible image coding methods with progressive build-up function by bit-plane of multi-lavel image. Firstly, the differencial conversion is applied to reduce the entropy of source images. Then the bit-plane sequences of converted images are coded by means of the newly designed VFRL(Variable to Fixed Run-Llength) code and the RDHC(Run-length Dynamic Huffman Coding). We aim to the simple construction to reduce the complexity. The computer simulated results show that the proposed methods are very effective to the multi-level digital images. For "GIRL" and "COUPLE" of 1EEE monochromatic standard images, the compressibility are superior to the results obtained by the well-known universal codes.own universal codes.

  • PDF

Resynthesis of Logic Gates on Mapped Circuit for Low Power (저전력 기술 매핑을 위한 논리 게이트 재합성)

  • 김현상;조준동
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.1-10
    • /
    • 1998
  • The advent of deep submicron technologies in the age of portable electronic systems creates a moving target for CAB algorithms, which now need to reduce power as well as delay and area in the existing design methodology. This paper presents a resynthesis algorithm for logic decomposition on mapped circuits. The existing algorithm uses a Huffman encoding, but does not consider glitches and effects on logic depth. The proposed algorithm is to generalize the Huffman encoding algorithm to minimize the switching activity of non-critical subcircuits and to preserve a given logic depth. We show how to obtain a transition-optimum binary tree decomposition for AND tree with zero gate delay. The algorithm is tested using SIS (logic synthesizer) and Level-Map (LUT-based FPGA lower power technology mapper) and shows 58%, 8% reductions on power consumptions, respectively.

  • PDF

Image Steganography to Hide Unlimited Secret Text Size

  • Almazaydeh, Wa'el Ibrahim A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.73-82
    • /
    • 2022
  • This paper shows the hiding process of unlimited secret text size in an image using three methods: the first method is the traditional method in steganography that based on the concealing the binary value of the text using the least significant bits method, the second method is a new method to hide the data in an image based on Exclusive OR process and the third one is a new method for hiding the binary data of the text into an image (that may be grayscale or RGB images) using Exclusive and Huffman Coding. The new methods shows the hiding process of unlimited text size (data) in an image. Peak Signal to Noise Ratio (PSNR) is applied in the research to simulate the results.